DOI QR코드

DOI QR Code

Assessment of Water Control Model for Tomato and Paprika in the Greenhouse Using the Penman-Monteith Model

Penman-Monteith을 이용한 토마토와 파프리카의 증발산 모델 평가

  • Somnuek, Siriluk (Renewable Energy Crop Institute, Department of Agriculture) ;
  • Hong, Youngsin (Division of Smart Farm Development, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Minyoung (Division of Disaster Prevention Engineering, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Sanggyu (Division of Smart Farm Development, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Baek, Jeonghyun (Division of Smart Farm Development, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kwak, Kangsu (Division of Smart Farm Development, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Hyondong (Division of Smart Farm Development, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Jaesu (Division of Smart Farm Development, Department of Agricultural Engineer, National Institute of Agricultural Sciences, Rural Development Administration)
  • 솜늑 시리락 (태국 농림부 신재생 에너지 작물 연구소) ;
  • 홍영신 (국립농업과학원 농업공학부 스마트팜개발과) ;
  • 김민영 (국립농업과학원 농업공학부 재해예방공학과) ;
  • 이상규 (국립농업과학원 농업공학부 스마트팜개발과) ;
  • 백정현 (국립농업과학원 농업공학부 스마트팜개발과) ;
  • 곽강수 (국립농업과학원 농업공학부 스마트팜개발과) ;
  • 이현동 (국립농업과학원 농업공학부 스마트팜개발과) ;
  • 이재수 (국립농업과학원 농업공학부 스마트팜개발과)
  • Received : 2019.12.05
  • Accepted : 2020.04.14
  • Published : 2020.07.30

Abstract

This paper investigated actual crop evapotranspiration (ETc) of tomato and paprika planted in test beds of the greenhouse. Crop water requirement (CWR) is the amount of water required to compensate ETc loss from the crop. The main objectives of the study are to assess whether the actual crop watering (ACW) was adequate CWR of tomato and paprika and which amount of ACW should be irrigated to each crop. ETc was estimated using the Penman-Monteith model (P-M) for each crop. ACW was calculated from the difference of amount of nutrient supply water and amount of nutrient drainage water. ACW and CWR of each crop were determined, compared and assessed. Results indicated CWR-tomato was around 100 to 1,200 ml/day, while CWR-paprika ranged from 100 to 500 ml/day. Comparison of ACW and CWR of each crop found that the difference of ACW and CWR are fluctuated following day of planting (DAP). However, the differences could divide into two phases, first the amount of ACWs of each crop are less than CWR in the initial phase (60 DAP) around 500 ml/day and 91 ml/day, respectively. Then, ACWs of each crop are greater than the CWR after 60 DAP until the end of cultivation approximately 400 ml/day in tomato and 178 ml/day in paprika. ETc assessment is necessary to correctly quantify crop irrigation water needs and it is an accurate short-term estimation of CWR in greenhouse for optimal irrigation scheduling. Thus, reducing ACW of tomato and paprika in the greenhouse is a recommendation. The amount of ACW of tomato should be applied from 100 to 1,200 ml/day and paprika is 100 to 500 ml/day depend on DAP.

ETc 손실을 보상하는데 필요한 물의 양을 작물 용수 요구량(Crop water requirement, CWR)로 정의되며, ETc 평가는 작물 필요 요구량을 정확하게 정량화하는 데 필요하며, 물 균형 계산에서 중요한 역할을 한다. 토마토와 파프리카의 실제 관수 요구량(Actual crop water, ACW)이 적절한 CWR인지 평가하였다. 토마토와 파프리카 재배에 적정한 AWC 예측 및 추정을 위하여 온실 내부 환경데이터를 Penman-Monteith을 이용하여 기준 작물 증발산(ET)을 계산한 후, 기준 증발산은 작물 상수(Kc;토마토-1.15, 파프리카-1.05)계수로 조정하였다. 토마토와 파프리카의 CWR과 ACW를 계산하여 비교 평가한 결과 ACW가 CWR을 대체할 수 있지만 파프리카의 ACW는 필요 이상으로 높게 나타났다. 또한, 토마토의 ACW는 1일 100 ~ 1,200 ml이고, 파프리카의 ACW는 1일 100 ~ 500 ml가 적절한 것으로 나타났다. 그러나, 스마트 온실에서 ETc의 정밀도를 높이려면, ETc가 CWR로 변환되고 ACW와 비교하기 위해서 클래스 A팬 설정이 필요하다. 향후 실시간으로 CWR을 측정하기 위한 시뮬레이션 프로그램 연구가 필요하다.

Keywords

References

  1. Aiswarya, L., K. Arunadevi, R. Lalitha, and S. Vallalkannan. 2019. Estimation of actual crop evapotranspiration of green chili in semi-arid region under different atmospheric condition. International journal of current microbiology and applied sciences 8:1104-1110. https://doi.org/10.20546/ijcmas.2019.805.127
  2. Albuquerque, F.S., E.F.F. Silva, J.A.C. Albuquerque Filho, and G.S. Lima. 2012. Water requirement and crop coefficient of fertigated sweet pepper. Brazilian journal of Irrigation and drainage 17:481-493.
  3. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evaporation-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO.
  4. Baek, J. H., J. W. Heo, H. H. Kim, Y. Hong, and J. S. Lee. 2018. Research platform design for the Korea smart greenhouse based on cloud computing. Protected horticulture and plant factory 27:27-33. https://doi.org/10.12791/KSBEC.2018.27.1.27
  5. Bakker, J. C., G. P. A. Bot, H. Challa, and N. J. van de Braak. 1995. Greenhouse Climate Control. Wageningen Pers, Wageningen, The Netherlands. 15-160.
  6. Baptista, F. J., B. J. Bailey, and J. Meneses. 2005. Measuring and modelling transpiration versus evapotranspiration of a tomato crop grown on soil in a Mediterranean greenhouse. Acta horticulture 691:313-320. https://doi.org/10.17660/ActaHortic.2005.691.36
  7. Choi, Y., M. Y. Kim, S. O'Shaughnessy, J. G. Jeon, Y. J. Kim, and W. J. Song. 2018. Comparison of artificial neural network and empirical models to determine daily reference evapotranspiration. Journal of the Korean society of agricultural engineer 60: 43-54. DOI: https://doi.org/10.5389/KSAE.201860.6.043
  8. Chopda, A., A. P. Sahu, D. M. Das, B. Panigrahi, and S. C. Senapati. 2018. Variation in actual evapotranspiration of green chili inside and outside the rooftop greenhouse under deficit irrigation. International journal of current microbiology and applied sciences 7:4152-4159. https://doi.org/10.20546/ijcmas.2018.708.434
  9. Costa, P. M., I. Pocas, and M. Cunha 2019. Modelling evapotranspiration of soilless cut roses "Red Naomi" based on climatic and crop predictors. Horticultural science 46:107-114. https://doi.org/10.17221/147/2017-HORTSCI
  10. Fazlil llahi, W. F. 2009. Evapotranspiration models in greenhouse. Master's Thesis, Wageningen University.
  11. Fernandez, M. D., S. S. Bonachela, F. Orgaz, R. Thompson, J. C. Lopez, M. R. Granados, M. Gallardo, and E. Fereres. 2010. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation science 28:497-509. https://doi.org/10.1007/s00271-010-0210-z
  12. Harmanto, V., M. Salokhe, M. S. Babel, and H. J. Tantau. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agricultural water management 71:225-242. https://doi.org/10.1016/j.agwat.2004.09.003
  13. Jayasekara, S. N., W. H. Na, A. B. Owababi, J. W. Lee, A. Rasheed, H. K. Kim, and H. W. Lee. 2018. Comparison of environmental conditions and insulation effect between air inflated and conventional double layer greenhouse. Protected horticulture and plant factory 27:46-53. https://doi.org/10.12791/KSBEC.2018.27.1.46
  14. Karaca C., B. Tekelioglu, D. Buyuktas, and R. Bastug. 2017. Assessment of the equations computing reference crop evapotranspiration. Academia journal of engineering and applied sciences ICAE-IWC (Special Issue):144-161.
  15. Katsoulas, N. and C. Stanghellini. 2019. Modelling crop transpiration in greenhouses: Different models for different applications. Agronomy 9:1-17. https://doi.org/10.3390/agronomy9070392
  16. Kitta, E., A. Baille, N. Katsoulas, and N. Rigakis. 2014. Predicting reference evapotranspiration for screenhousegrown crops. Agricultural water management 143:122-130. https://doi.org/10.1016/j.agwat.2014.07.006
  17. Lozano, C. S., R. Rezende, P. S. L. Freitas, T. L. Hachmann, F. A. S. Santos, and A. F. B. A. Andrean. 2017. Estimation of evapotranspiration and crop coefficient of melon cultivated in protected environment. Revista brasileira de engenharia agricola e ambiental 21:758-762. https://doi.org/10.1590/1807-1929/agriambi.v21n11p758-762
  18. Lizarraga, A., H. Boesveld, F. Huibers, and C. Robles. 2003. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrigation and drainage 52:177-188. https://doi.org/10.1002/ird.86
  19. Moazed, H., A. A. Ghaemi, and Rafiee, M. R. 2014. Evaluation of several reference evapotranspiration methods: a comparative study of greenhouse and outdoor condition. Iranian Journal of Science and Technology. Transactions of civil engineering 38:421-437.
  20. Nikolaou, G., D. Neocleous, N. Katsoulas, and C. Kittas. 2019. Review: irrigation of greenhouse crops. Horticulture 5:1-20.
  21. Pamungkas, A. P., K. Hatou, and T. Morimoto. 2013. Modeling the evapotranspiration inside the greenhouse systems by using matlab simulink. In IFAC Proceedings Volumes 46: 33-37. Retrieved from https://doi.org/10.3182/20130327-3-JP-3017.00010
  22. Papadakis, G., A. Frangoudakis, and S. Kyritsis. 1994. Experimental investigation and modelling of heat and mass transfer between a tomato crop and greenhouse environment. Journal of Agriculture engineering research 57:217-227. https://doi.org/10.1006/jaer.1994.1022
  23. Perera, K. C., A. W. Western, B. Nawarathna, and B. George. 2015. Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia. Agricultural water management 148: 84-96. https://doi.org/10.1016/j.agwat.2014.09.016
  24. Perez-Castro, A., J. A. Sanchez-Molina, M. Castilla, and J. Sanchez-Moreno. 2017. cFertigUAL: A fertigation management app for greenhouse vegetable crops. Agricultural water management 183:186-193. https://doi.org/10.1016/j.agwat.2016.09.013
  25. Rahil, M. H. and A. Qanadillo. 2015. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agricultural water management 148:10-15. https://doi.org/10.1016/j.agwat.2014.09.005
  26. Snyder, R. G. 1992. Greenhouse tomato handbook. Publication No. 1828. Mississippi State University. Cooperative extension service, USA. p. 30.
  27. Sharma, H., M. K. Shukla, P. W.Bosland, and R. Steiner. 2017. Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agricultural water management 179:81-91. https://doi.org/10.1016/j.agwat.2016.07.001
  28. Tan, C. S. 1990. Irrigation scheduling for fruit crop: low- volume drip or micro-sprinkler systems. Ministry of Agriculture, Food and Rural Affairs of Canada. Accessed 15 July, 2019. Retrieved from http://www.omafra.gov.on.ca/ english/crops/facts/90-069.htm#b.
  29. van Iersel, M. W., M. Chappell, and J. D. Lea-cox. 2013. Sensors for improved efficiency of irrigation in greenhouse and nursery production. American society for horticultural science 23:735-746.
  30. Villarreal-Guerrero, F., M. Kacira, E. Fitz-Rodriguez, C. Kubota, G. A. Giacomelli, R. Linker, and A. Arbel. 2012. Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high-pressure fogging. Scientia Horticulture 134: 210-221. https://doi.org/10.1016/j.scienta.2011.10.016
  31. Woo, Y. H., H. J. Kim, Y. I. Nam, I. H. Cho, and Y. S. Kwon. 2000. Predicting and measuring transpiration based on phyto monitoring of tomato in greenhouse. Protected horticulture and plant factory 41:459-463.
  32. Yang, X., T. H. Short, R. D. Fox, and W. L. Bauerle. 1989. The Microclimate and transpiration of a greenhouse cucumber crop. American society of agricultural engineers 32:2143-2150. https://doi.org/10.13031/2013.31276