• Title/Summary/Keyword: Smart Technologies

Search Result 1,651, Processing Time 0.027 seconds

Fault Tree Analysis and Fault Modes and Effect Analysis for Security Evaluation of IC Card Payment Systems (IC카드 지불결제 시스템의 보안성 평가를 위한 고장트리 분석(FTA)과 고장유형과 영향 분석(FMEA))

  • Kim, Myong-Hee;Jin, Eun-Ji;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.87-99
    • /
    • 2013
  • The demands of IC card payment system has been increased according to the rapid advancement of the IT convergence application technologies. Recently IC card payment systems are in demands of the usage space at anytime and anywhere by developing the wireless communication technology and its related multimedia processing technology. Therefore the security of IC card payment system becomes more important and necessary. There are many fault analysis methods to evaluate the security and safety of information systems according to their characteristics and usages. However, the only assessment method to evaluate the security of information systems is not enough to analyse properly on account of the various types and characteristics of information systems by the progress of IT convergence and their applications. Therefore, this paper proposes an integrative method of the Fault Tree Analysis (FTA) and Fault Modes and Effect Analysis/Criticality (FMEA/C) based on criticality to evaluate and improve the security of IC card payment system as an illustration.

Design of Hybrid Communication Structure for Video Transmission in Drone Systems (드론 영상 전송용 하이브리드 통신 구조의 설계)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.9-14
    • /
    • 2019
  • In modern society drones are actively utilized in the fields of security, defense, agriculture, communication and so on. Smart technology and artificial intelligence software have been developed with convergence, and the field of use is expected to expand further. On the point of the excellent performance of drones one of the essential technologies is the wireless communication that make the ground facility receive the video streaming obtained by the drones in the air. In the research the concept of communication region is proposed to cover the both the low altitude region for Wi-Fi communication and the high altitude region for LTE communication for the sake of video transmission. Also the hybrid communication structure is designed along the proposed concept and the proposed system is implemented as a communication system in the small size which can be mounted in a small size of drone. It is confirmed that the proposed system contains the effectiveness by showing the ability to successfully transmit HD video streaming in the range of 500 meters and the transfer time between two different communication systems is measured in 200msec by the experiments.

Identification of Major BIM-applicable Tasks with Contribution to Achieving Objectives and Expected Benefit in Construction Stage: Focused on the Case of Public Apartment Housing Projects (목표달성기여도와 예상적용효과에 의한 시공단계 BIM 주요 업무 도출 - 공공부문 공동주택 건설사업 사례를 중심으로 -)

  • Song, Sanghoon;Bang, Jong-Dae;Sohn, Jeong-Rak
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.41-53
    • /
    • 2019
  • As a central part in smart construction, BIM has been rapidly spread in construction industry at large. However, the level of applying BIM in construction stage is still relatively lower than that in design stage due to unclear application method, inadequate design BIM model, technical faults of BIM itself, etc. Under these circumstances, public owners inevitably need to adjust the scope and pace in BIM application considering their internal support and capabilities of contractors. This study aims to suggest major BIM-applicable tasks during construction stage in the process of establishing gradual long-term and short-term introduction strategy for public apartment housing projects. Those major tasks were identified with the combination of the importance of tasks and the future benefits of BIM using IPA method. To do so, the degrees of contribution to achieving objectives in construction, current task execution, and communication requirement were investigated by internal site managers. On the other hand, the expected benefits and current level of using BIM were assessed by BIM experts. Among operational tasks by phases, design review, construction plan review, making as-built drawing, etc. were categorized as major tasks. In addition, progress control, regular meeting, master schedule development, work inspection, on-site quality check, etc. were also drawn as major tasks by management areas. The results of this study will provide the useful reference for owners concerned about the introduction of new technologies.

Data Pattern Modeling for Bio-information Processing based on OpenBCI Platform (OpenBCI 플랫폼 기반 생체 정보 처리를 위한 데이터 패턴 모델링)

  • LEE, Tae-Gyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.451-456
    • /
    • 2019
  • Recently, various bioinformation technologies have been proposed, and research and development on the collection and analysis of the human body related bioinformation have been continuously conducted to support the human life environment and healthcare. These biomedical research and development processes add to the redundancy and complexity of the R&D elements and put a heavy burden on the follow-up research developers. Therefore, this study utilizes an open bioinformation platform that effectively supports the collection and analysis of bioinformation to improve the redundancy and complexity of bioinformatics R&D based on the bioinformatics platform. In addition, I propose an open interface that supports acquisition, processing, analysis, and application of bio-signals. In particular, we propose a biometric information normalization pattern model through data analysis modeling of brain wave information based on an open interface.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model (자동 회귀 통합 이동 평균 모델 적용을 통한 한국의 자동차 사고에 대한 시계열 예측)

  • Shin, Hyunkyung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.54-61
    • /
    • 2019
  • Recently, IITS (intelligent integrated transportation system) has been important topic in Smart City related industry. As a main objective of IITS, prevention of traffic jam (due to car accidents) has been attempted with help of advanced sensor and communication technologies. Studies show that car accident has certain correlation with some factors including characteristics of location, weather, driver's behavior, and time of day. We concentrate our study on observing auto correlativity of car accidents in terms of time of day. In this paper, we performed the ARIMA tests including ADF (augmented Dickey-Fuller) to check the three factors determining auto-regressive, stationarity, and lag order. Summary on forecasting of hourly car crash counts is presented, we show that the traffic accident data obtained in Korea can be applied to ARIMA model and present a result that traffic accidents in Korea have property of being recurrent daily basis.

Android-Based Open Platform Intelligent Vehicle Services Middleware Application (안드로이드 기반의 지능형자동차 미들웨어 오픈플랫폼 서비스 응용)

  • Choi, Byung-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.33-41
    • /
    • 2013
  • Intelligent automobile technology and IT convergence, the development of new imaging technology media applications based on open source Android installed on tracked, wheeled smart phone application technology and the development of intelligent vehicles as a new paradigm a lot of research and development being made. Android-based intelligent automotive applications, technology, and evolved into the center of a set of various multimedia technologies move beyond the limits of the means of each of multimedia platforms, services and applications that have been developed in such a distributed environment, has been developed according to a variety of services through technology mobile terminal device technology is an absolute requirement. In this paper, SVC Codec, real-time video and graphics processing and SoC design intelligent vehicles middleware applications with monolithic system specification through Android-based design of intelligent vehicles dedicated middleware research experiments on open platforms, and provides various terminal services functions SoC based on a newly designed and standardized interface analysis techniques in this study were verified through experiments.

A Study on the Mitigation of Taxi Supply and Demand Discrepancy by Adjusting Expected Revenues of Platform Taxi Calls (택시호출 간 기대수익 조정을 통한 택시 수급불일치 완화방안 연구)

  • Song, Jaein;Kang, Min Hee;Hwang, Kee yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.157-171
    • /
    • 2021
  • As smartphones spread and ICT technologies develop, taxi services have changed from hovering to platform-based calls and reservations. This has improved the mobility and accessibility of taxi users but caused problems, such as digital observing (no-responses to calls) for either short-distance services or services during the peak-demand periods. Digital Observing means ignoring and not accepting calls when they occur, which require improvement. Therefore, this study aims to derive measures to mitigate discrepancies in taxi supply and demand by adjusting the expected revenue of each taxi service using reinforcement learning based on the Taxi operation data. The results confirmed that the average complete response rate to calls would increase from 50.29% to 54.24% when incentives are applied, and an improvement of 5.86% can be achieved in short-distance sections of less than 5,000 won incentives. It is expected that the improvement will increase profitability for drivers, reduce the waiting time for passengers, and improve satisfaction with taxi services overall.

UAV Utilization for Efficient Estimation of Earthwork Volume Based on DEM

  • Seong, Jonghyeun;Cho, Sun Il;Xu, Chunxu;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.279-288
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart construction, in which new technologies such as UAV (Unmanned Aerial Vehicle) are fused, is attracting attention in the construction field. However, the method of estimating earthwork volume using DEM generated by UAV survey according to practical regulations such as construction design guidelines or standard product counting is not officially recognized and needs to be improved. In this study, different types of UAV were measured and DEM was obtained using this data. The DEM (Digital Elevation Model) thus obtained was analyzed for changes in the amount of earthworks according to the size of the GSD (Ground Sample Distance). In addition, the amount of earthwork by DEM and the amount of earthwork by existing design drawings were compared and analyzed. As a result of the study, it was suggested that images with a GSD of 5cm or less are effective to generate a high-quality DEM. Next, as a result of comparing the earthwork volume calculation method using DEM and the earthwork volume based on the existing 2D design drawings, a difference of about 1% was shown. In addition, when the design earthwork amount calculated by the double-section averaging method was compared with the designed earthwork amount using DEM data by UAV survey, a difference of about 1% was found. Therefore, it is suggested that the method of calculating the amount of earthworks using UAV is an efficient method that can replace the existing method.