• 제목/요약/키워드: Smart Plate

검색결과 301건 처리시간 0.029초

Damage localization in plate-like structure using built-in PZT sensor network

  • Liu, Xinglong;Zhou, Chengxu;Jiang, Zhongwei
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.21-33
    • /
    • 2012
  • In this study, a Lamb-wave based damage detection approach is proposed for damage localization in plate. A sensor network consisting of three PZT wafer type actuators/sensors is used to generate and detect Lamb waves. To minimize the complication resulted from the multimode and dispersive characteristics of Lamb waves, the fundamental symmetric Lamb mode, $S_0$ is selectively generated through designing the excitation frequency of the narrowband input signal. A damage localization algorithm based upon the configuration of the PZT sensor network is developed. Time-frequency analysis method is applied to purify the raw signal and extract damage features. Experimental result obtained from aluminum plate verified the proposed damage localization approach.

Analysis of functionally graded plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.441-448
    • /
    • 2017
  • This paper uses the four-variable refined plate theory for the free vibration analysis of functionally graded material (FGM) rectangular plates. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from the Hamilton's principle. The closed-form solutions of functionally graded plates are obtained using Navier solution. Numerical results of the refined plate theory are presented to show the effect of the material distribution, the aspect and side-to-thickness ratio on the fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of functionally graded plates.

Non-stochastic uncertainty response assessment method of beam and laminated plate using interval finite element analysis

  • Doan, Quoc Hoan;Luu, Anh Tuan;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.311-318
    • /
    • 2020
  • The goal of this study is to analytically and non-stochastically generate structural uncertainty behaviors of isotropic beams and laminated composite plates under plane stress conditions by using an interval finite element method. Uncertainty parameters of structural properties considering resistance and load effect are formulated by interval arithmetic and then linked to the finite element method. Under plane stress state, the isotropic cantilever beam is modeled and the laminated composite plate is cross-ply lay-up [0/90]. Triangular shape with a clamped-free boundary condition is given as geometry. Through uncertainties of both Young's modulus for resistance and applied forces for load effect, the change of structural maximum deflection and maximum von-Mises stress are analyzed. Numerical applications verify the effective generation of structural behavior uncertainties through the non-stochastic approach using interval arithmetic and immediately the feasibility of the present method.

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory

  • Song, Myung-Kwan;Noh, Hyuk-Chun;Kim, Sun-Hoon;Han, In-Seon
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.477-501
    • /
    • 2005
  • In this study, a new smart beam finite element is proposed for the finite element modeling of beam-type smart structures that are equipped with bonded plate-type piezoelectric sensors and actuators. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered in the formulation. By using a variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. The proposed smart beam finite element is applied to the free vibration control adopting a constant gain feedback scheme. The electrical force vector, which is obtained in deriving an equation of motion, is the control force equivalent to that in existing literature. Validity of the proposed element is shown through comparing the analytical results of the verification examples with those of other previous researchers. With the use of smart beam finite elements, simulation of free vibration control is demonstrated by sensing the voltage of the piezoelectric sensors and by applying the voltages to the piezoelectric actuators.

압전션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구 (Multi-mode noise reduction of using piezoelectric shunt damping smart panels)

  • 김준형;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.216-221
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductors, and a load resistor is devised to dissipate the maximum energy into the joule heat energy. For multi-mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. Also the optimal location of the piezoelectric patch is studied by FEM in order to cause the maximum admittance from the patch for each mode of aluminum plate. In results, the transmitted sound pressure level of panels is efficiently reduced for multi-modes

  • PDF

Proposal of a Portable Folding Electric Scooter Model and Manufacturing of the Prototype

  • Kwon, Young Woong;Eu, Heung Sun
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.58-64
    • /
    • 2019
  • In recent years, small mobile devices called personal mobility or smart mobility have attracted attention. Personal mobility refers to electric-driven personal transportation that can travel at close range and medium distance, including small electric vehicles, electric bicycles, electric motorcycles and electric scooters. Most of the electric scooters used in Korea are mainly imported from China. This is due to the fact that the price competitiveness of major components of electric scooters is owned in China. At this point, the domestic research direction is preferable for the composition and design of the electric scooter body rather than cost reduction for the components. In this study, we propose a new model of portable folding structure that is easy to use for electric scooters, which are personal vehicles using electric energy. We also made a prototype for practical use.

기울기 센서와 압력 센서를 이용한 전동 킥보드용 다인승 감지 방안 (Multiuser Detection of Electric Scooter Using Tilt and Pressure Sensors)

  • 안문정;김지아;이지훈
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.28-32
    • /
    • 2024
  • The personal mobility Sharing service is currently active. Especially, electric scooters are widely utilized because they can move comfortably at a high speed over a short distance with a simple driving method. Its driving method is easy, but there is no protection device to protect the bare body. So, there is a greater accident than other means of transportation, and if two people are on board, there is higher accident probability. However, since there is no specific ways to prevent multi-person boarding yet, we propose a multi-person boarding detection model using tilt and pressure sensor. The proposed method measures the tilt degree and direction by using a tilt sensor installed in the center of the board plate and detects multi-people riding.

  • PDF