• Title/Summary/Keyword: Smart Grid Networks

Search Result 86, Processing Time 0.024 seconds

Optimization of Home Loads scheduling in Demand Response (수요 반응에서 가정용 전력기계의 최적화된 스케쥴링 기법)

  • Kim, Tae-Wan;Lee, Sung-Jin;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1407-1415
    • /
    • 2010
  • In recent years, the smart grid technique for maximizing the energy efficiency of power networks has received a great deal of attentions. In particular, the Demand Response is a core technology differentiated from the present power network under the smart grid paradigm. To minimize the electric cost and maximize users' satisfaction, this paper proposes a unique scheduling algorithm derived by using optimization where the characteristics of various home appliances are taken into account. For this goal, we represent mathematical consumption patterns of the electric loads and propose the optimal scheduling scheme based on the importance factor of each device during one day. In the simulation results, we demonstrate the effectiveness of the proposed algorithm in the viewpoint of the minimal electric costs utilizing real statistical figures.

Analysis of Security Requirements on DCU and Development Protection Profile based on Common Criteria Version 3.1 (DCU 보안요구사항 분석 및 CC v3.1 기반의 보호프로파일 개발)

  • Cho, Youngjun;Kim, Sinkyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.1001-1011
    • /
    • 2014
  • Smart Grid Devices could have security vulnerabilities that have legacy communication networks because of the fact that Smart Grid employs bi-directional communications and adopted a variety of communication interface. Consequently, it is required to build concrete response processes and to minimize the damage of the cyber attacks including security evaluation and certification methods. DCU is designed to collect meter data from numerous smart meter and send to utility's server so DCU installed between smart meter and utility's server. For this reason, If DCU compromised by attacker then attacker could use DCU to launching point for and attack on other devices. However, DCU's security evaluation and certification techniques do not suffice to be deployed in smart grid infrastructure. This work development DCU protection profile based on CC, it is expected that provide some assistance to DCU manufacturer for development of DCU security target and to DCU operator for help safety management of DCU.

Cyber Threat and a Mitigation Method for the Power Systems in the Smart Grid

  • Kim, Myongsoo;Kim, Younghyun;Jeon, Kyungseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1043-1050
    • /
    • 2014
  • Obsolescent control systems for power systems are evolving into intelligent systems and connecting with smart devices to give intelligence to the power systems. As networks of the control system are growing, vulnerability is also increasing. The communication network of distribution areas in the power system connects closely to vulnerable environments. Many cyber-attacks have been founded in the power system, and they could be more critical as the power system becomes more intelligent. From these environment, new communication network architecture and mitigation method against cyber-attacks are needed. Availability and Fault Tree analysis used to show that the proposed system enhances performance of current control systems.

A Study of an Efficient ZigBee Address Assignment Scheme for Home Area Networks of Smart Grid

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.566-576
    • /
    • 2013
  • In Home Area Network (HAN) of the smart grid, Power Line Communication (PLC) technology and ZigBee communication technology can be used in the communication among the Advanced Metering Infrastructure (AMI) devices. However, according to performance evaluation results of the PLC technology, we find that using the PLC technology is unsuitable for the remote meter reading service. It is worth noting that some parts of the PLC are converted to the ZigBee communication technology in Jeju, Korea. Compared with PLC, ZigBee has no restriction of the place, where the equipments can be freely set up, due to the advantage of radio communication. However, number of usable devices will impact the network performance which is depended on the address assignment. In addition, due to the restriction of transmission range among devices, it is difficult to apply the ZigBee address assignment method to the practical circumstance. In this paper, we examine the previous ZigBee address assignment schemes and the corresponding routing algorithms, and propose a novel address assignment scheme compared with the existing methods, the performance of the proposed one is improved. In particular, evaluation results show that the proposed scheme reduces the average number of hop count, the transfer time and the processing time.

A Wireless Network Structure and AKA(Authentication and Key Agreement) Protocol of Advanced Metering Infrastructure on the Smart Grid based on Binary CDMA (스마트 그리드를 위한 Binary CDMA 기반의 AMI 무선 네트워크 구조 및 AKA 프로토콜)

  • Jeon, Jae-Woo;Lim, Sun-Hee;Yi, Ok-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.111-124
    • /
    • 2010
  • AMI (Advanced Metering Infrastructure) is a core infrastructure of Smart Grid, and is promoting in various country. Wireless network is considered for cost savings and operational efficiencies in AMI. But various security problems are expected in wireless networks of AMI, so we should solve these problems. In this paper, we suggest a wireless network of AMI by using Binary CDMA and security countermeasures of AMI wireless network. Proposed security architecture is using BSIM (Binary Subscriber Identity Module) to perform user authentication and key agreement for the encryption and decryption over radio network to reduce security threats.

A Hyper Cube Spanning Tree Protocol for Smart Grid (스마트그리드를 위한 하이퍼큐브 스패닝 트리 프로토콜)

  • Piao, Wenjie;Joe, In-Whee
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.572-575
    • /
    • 2011
  • It is well known that spanning tree protocol (STP) is the most commonly used protocol in switching networks for smart grid. STP selectively blocks redundancy links of the network to prevent layer 2 loops in network, and it also has a functionality of backing up links. As with the other protocols, STP has been updated with the continuing development of the network. STP is a broad concept and it does not just refer in particular to defined STP protocol in IEEE 802.1D standards, it refers to updated spanning tree protocol based on STP. Because of uneven distribution of communication traffic in root bridge, STP cannot satisfy fast converge nce while the failure occurs near the root bridge or on the root bridge in tree topologies of STP. In this paper, we propose a novel method --- Hyper Cube Spanning Tree Protocol (HCSTP) to solve uneven distribution of communication traffic. Theoretically, hyper cube in our protocol increases throughput and improves the utilization of communication. The simulation results show that HCSTP can achieve comparative and considerably higher performance than other STP protocols in terms of reconnection.

Improvement of High-Availability Seamless Redundancy (HSR) Traffic Performance for Smart Grid Communications

  • Nsaif, Saad Allawi;Rhee, Jong Myung
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.653-661
    • /
    • 2012
  • High-availability seamless redundancy (HSR) is a redundancy protocol for Ethernet networks that provides two frame copies for each frame sent. Each copy will pass through separate physical paths, pursuing zero fault recovery time. This means that even in the case of a node or a link failure, there is no stoppage of network operations whatsoever. HSR is a potential candidate for the communications of a smart grid, but its main drawback is the unnecessary traffic created due to the duplicated copies of each sent frame, which are generated and circulated inside the network. This downside will degrade network performance and might cause network congestion or even stoppage. In this paper, we present two approaches to solve the above-mentioned problem. The first approach is called quick removing (QR), and is suited to ring or connected ring topologies. The idea is to remove the duplicated frame copies from the network when all the nodes have received one copy of the sent frame and begin to receive the second copy. Therefore, the forwarding of those frame copies until they reach the source node, as occurs in standard HSR, is not needed in QR. Our example shows a traffic reduction of 37.5%compared to the standard HSR protocol. The second approach is called the virtual ring (VRing), which divides any closed-loop HSR network into several VRings. Each VRing will circulate the traffic of a corresponding group of nodes within it. Therefore, the traffic in that group will not affect any of the other network links or nodes, which results in an enhancement of traffic performance. For our sample network, the VRing approach shows a network traffic reduction in the range of 67.7 to 48.4%in a healthy network case and 89.7 to 44.8%in a faulty network case, compared to standard HSR.

Embedded-based Power Monitoring Security Module Design (임베디드 전력 모니터링 보안 모듈 설계)

  • Yoon, Chan-Ho;Kim, Gwang-Jun;Jang, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1485-1490
    • /
    • 2013
  • The demonstration project of the electrical grid for Smart grid is progressed, the smart digital appliances AV technology, Smart home energy management technology charging the management function of complex energy for the automation management of air conditioning and heating, humidity and air, the health care technology charging the design of housing for the elderly and disabled and the measurement of individual bio information, and the Smart home security technology dealing with the biometric security and motion sensors, etc. have been studied. The power monitoring terminal which uses a variety of wired and wireless networks and protocol is the target additionally to be considered in addition to the security vulnerabilities that was occurred in the existing terminal. In this research paper, the author analyzes the cryptographic techniques corresponding to the smart meter occurred by the problems that are exposed on the outside which are vulnerable to physical attacks, and intends to propose the design of the security systems for the Smart meter terminal being able to maximize the efficiency of the terminal.

Leakage detection and management in water distribution systems

  • Sangroula, Uchit;Gnawali, Kapil;Koo, KangMin;Han, KukHeon;Yum, KyungTaek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.160-160
    • /
    • 2019
  • Water is a limited source that needs to be properly managed and distributed to the ever-growing population of the world. Rapid urbanization and development have increased the overall water demand of the world drastically. However, there is loss of billions of liters of water every year due to leakages in water distribution systems. Such water loss means significant financial loss for the utilities as well. World bank estimates a loss of $14 billion annually from wasted water. To address these issues and for the development of efficient and reliable leakage management techniques, high efforts have been made by the researchers and engineers. Over the past decade, various techniques and technologies have been developed for leakage management and leak detection. These include ideas such as pressure management in water distribution networks, use of Advanced Metering Infrastructure, use of machine learning algorithms, etc. For leakage detection, techniques such as acoustic technique, and in recent yeats transient test-based techniques have become popular. Smart Water Grid uses two-way real time network monitoring by utilizing sensors and devices in the water distribution system. Hence, valuable real time data of the water distribution network can be collected. Best results and outcomes may be produced by proper utilization of the collected data in unison with advanced detection and management techniques. Long term reduction in Non Revenue Water can be achieved by detecting, localizing and repairing leakages as quickly and as efficiently as possible. However, there are still numerous challenges to be met and future research works to be conducted in this field.

  • PDF

Network Congestion Control Through Adjustment of Data Transmission Time on Smart Grid Networks (스마트 그리드 네트워크에서 데이터 전송시간 조절을 통한 네트워크혼잡 개선 방법)

  • Park, Se-Young;Kim, Mi-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.217-218
    • /
    • 2012
  • 기기간(M2M, Machine-to-Machin) 통신의 한 응용으로서 스마트 그리드 네트워크는 다수의 기기 통신으로 인한 전송 데이터의 방대한 양을 대표적 특징으로 꼽을 수 있다. 이에 현재 사용가능한 통신 기술들을 그대로 사용할 경우, 병목현상 혹은 네트워크 혼잡 등 네트워크 장애 및 전송 지연이 발생할 수 있다. 특히 스마트 그리드 네트워크의 상향 트래픽은 시간조절이 가능한 주기적 미터링 데이터와 지연민감한 이벤트 데이터로 나뉜다. 이에 본 논문에서는 각 트래픽 특성에 따라 트래픽양의 대다수를 이룰 미터링 데이터의 전송시간 조절을 이용한 혼잡제어 기법을 제안한다. 이를 통해 지연민감한 이벤트 데이터의 지연시간 내 전송 보장 확률을 높이고, 트래픽을 분산시킴으로써 전송 효율을 높이고자 한다.

  • PDF