• Title/Summary/Keyword: Smart Grid Networks

Search Result 86, Processing Time 0.029 seconds

Cognitive Beamforming Based Smart Metering for Coexistence with Wireless Local Area Networks

  • Lee, Keonkook;Chae, Chan-Byoung;Sung, Tae-Kyung;Kang, Joonhyuk
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.619-628
    • /
    • 2012
  • The ZigBee network has been considered to monitor electricity usage of home appliances in the smart grid network. ZigBee, however, may suffer from a coexistence problem with wireless local area network (WLAN). In this paper, to resolve the coexistence problem between ZigBee network and WLAN, we propose a new protocol constructing a cognitive smart grid network for supporting monitoring of home appliances. In the proposed protocol, home appliances first estimates the transmission timing and channel information of WLAN by reading request to send/clear to send (RTS/CTS) frames of WLAN. Next, based on the estimated information, home appliances transmit a data at the same time as WLAN transmission. To manage the interference between WLAN and smart grid network, we propose a cognitive beamforming algorithm. The beamforming algorithm is designed to guaranteeing zero interference to WLAN while satisfying a required rate for smart metering. We also propose an energy efficient rate adaptation algorithm. By slowing down the transmission rate while satisfying an imperceptible impact of quality of service (QoS) of the receiver, the home appliance can significantly save transmit power. Numerical results show that the proposed multiple antenna technique provides reliable communications for smart metering with reduced power comparing to the simple transmission technique.

An Energy-Efficient Multi-Hop Scheme Based on Cooperative MIMO for Wireless Sensor Networks

  • Peng, Yu-Yang;Abn, Seong-Beom;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.796-800
    • /
    • 2011
  • An energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks, taking into consideration the modulation constellation size, transmission distance, and extra training overhead requirement. The scheme saves energy by selecting the hop length. In order to evaluate the performance of the proposed scheme, a detailed analysis of the energy and delay efficiencies in the proposed scheme compared with the equidistance scheme is presented. Results from numerical experiments indicate that by use of the proposed scheme significant savings in terms of total energy cousumption can be achieved.

Detection and Trust Evaluation of the SGN Malicious node

  • Al Yahmadi, Faisal;Ahmed, Muhammad R
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.

Methodology of Cyber Security Assessment in the Smart Grid

  • Woo, Pil Sung;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.495-501
    • /
    • 2017
  • The introduction of smart grid, which is an innovative application of digital processing and communications to the power grid, might lead to more and more cyber threats originated from IT systems. In other words, The Energy Management System (EMS) and other communication networks interact with the power system on a real time basis, so it is important to understand the interaction between two layers to protect the power system from potential cyber threats. This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. In this study, the optimal power flow (OPF) and Power Flow Tracing are used to assess the interaction between the EMS and the power system. Through OPF and Power Flow Tracing based analysis, the physical and economic impacts from potential cyber threats are assessed, and thereby the quantitative risks are measured in a monetary unit.

State of the Art 3GPP M2M Communications toward Smart Grid

  • Kwon, Young-Min;Kim, Jun-Suk;Chung, Min-Young;Choo, Hyun-Seung;Lee, Tae-Jin;Kim, Mi-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.468-479
    • /
    • 2012
  • Recent advances in wireless communications and electronics has enabled the development of machine-to-machine (M2M) communications. This communication paradigm has been expected as an automated control and report solution for smart grid. The smart grid enables customers and operators to utilize the collected usage information from a large number of meters with transceivers for efficiency and safety. In this paper, we introduce architecture, requirements and challenges of M2M communications for smart grid. We extract technical issues that should be resolved in M2M communications to support the smart grid via third-generation partnership project (3GPP) cellular networks. We then present the current state of the art of research results to deal with such issues. Finally, we outline the open research issues.

Wireless Sensor Networks in Smart Grid on Demand Management

  • Lee, Sang-Hyun;Jeon, An-Gyoon;Moon, Kyung-Il
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.2
    • /
    • pp.17-19
    • /
    • 2014
  • Now is the applications are using WSN for environmental monitoring and surveillance applications, intelligent transportation systems, monitoring, disaster recovery, and the structure used in the field. Also, the low cost of the communication and control functions can be provided, in particular management of smart grid demand may be used in many applications. In this paper, WSN in smart grid is based on the building blocks of smart grid management system proposed for the fuzzy demand.

Wide-Area SCADA System with Distributed Security Framework

  • Zhang, Yang;Chen, Jun-Liang
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.597-605
    • /
    • 2012
  • With the smart grid coming near, wide-area supervisory control and data acquisition (SCADA) becomes more and more important. However, traditional SCADA systems are not suitable for the openness and distribution requirements of smart grid. Distributed SCADA services should be openly composable and secure. Event-driven methodology makes service collaborations more real-time and flexible because of the space, time and control decoupling of event producer and consumer, which gives us an appropriate foundation. Our SCADA services are constructed and integrated based on distributed events in this paper. Unfortunately, an event-driven SCADA service does not know who consumes its events, and consumers do not know who produces the events either. In this environment, a SCADA service cannot directly control access because of anonymous and multicast interactions. In this paper, a distributed security framework is proposed to protect not only service operations but also data contents in smart grid environments. Finally, a security implementation scheme is given for SCADA services.

A Design for a Zigbee Security System in the Customer Side Environment of Jeju Smart Grid Field Test (제주 스마트그리드 실증단지 수용가 환경에서 Zigbee 보안 체계 설계)

  • Lee, Myung-Hoon;Son, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1186-1192
    • /
    • 2012
  • In Jeju Smart Grid field test, Zigbee technology is being used as one of customer side solutions for AMI. Although Zigbee networks that provides effective connectivity and control among devices are advantages in ease of implementation and use, the data can be exposed to cyber attacks such as eavesdrop, unauthorized data dissemination and forgery. Currently authentication and confidentiality services are provided with the network and link keys generated based on public key pairs that are pre-installed in offline. However, the network is vulnerable once a hacker intrudes into a local network because operation and management policies for the generated keys are not well-established yet. In this paper, the vulnerability of the Zigbee security system in the customer side environment of Jeju Smart Grid field test is analyzed. Then, two-way authentication with the unique identifiers of devices and user-specific group management policies are proposed to resolve the vulnerability.

A Algorithm on Optimizing Traffic Network by the Control of Traffic Signal Timing (교통신호등 제어를 통한 교통망 최적화 알고리즘)

  • An, Yeong-Pil;Kim, Dong-Choon;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.472-478
    • /
    • 2017
  • In this paper, we deals with optimizing traffic signal timing in grid networks by using a network topology design method. Optimizing traffic signal timing includes minimizing delay time delay between departure and destination by interlocking straight traffic signal in the minimum spanning tree(MST). On the assumption that users of network abide by the paths provided in this paper, this paper shows optimizing traffic signal timing in grid networks. the paths provided in this paper is gathered by using Dijkstra algorithm used in computer networks. The results indicate minimizing delay time of passing through the grid network and interlocking traffic signal in the grid network.

A Privacy-preserving Data Aggregation Scheme with Efficient Batch Verification in Smart Grid

  • Zhang, Yueyu;Chen, Jie;Zhou, Hua;Dang, Lanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.617-636
    • /
    • 2021
  • This paper presents a privacy-preserving data aggregation scheme deals with the multidimensional data. It is essential that the multidimensional data is rarely mentioned in all researches on smart grid. We use the Paillier Cryptosystem and blinding factor technique to encrypt the multidimensional data as a whole and take advantage of the homomorphic property of the Paillier Cryptosystem to achieve data aggregation. Signature and efficient batch verification have also been applied into our scheme for data integrity and quick verification. And the efficient batch verification only requires 2 pairing operations. Our scheme also supports fault tolerance which means that even some smart meters don't work, our scheme can still work well. In addition, we give two extensions of our scheme. One is that our scheme can be used to compute a fixed user's time-of-use electricity bill. The other is that our scheme is able to effectively and quickly deal with the dynamic user situation. In security analysis, we prove the detailed unforgeability and security of batch verification, and briefly introduce other security features. Performance analysis shows that our scheme has lower computational complexity and communication overhead than existing schemes.