• Title/Summary/Keyword: Smart Factory Standard System

Search Result 23, Processing Time 0.022 seconds

Development of Smart Factory Diagnostic Model Reflecting Manufacturing Characteristics and Customized Application of Small and Medium Enterprises (제조업 특성을 반영한 스마트공장 진단모델 개발 및 중소기업 맞춤형 적용사례)

  • Kim, Hyun-Deuk;Kim, Dong-Min;Lee, Kyung-Geun;Yoon, Je-Whan;Youm, Sekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.25-38
    • /
    • 2019
  • This study is to develop a diagnostic model for the effective introduction of smart factories in the manufacturing industry, to diagnose SMEs that have difficulties in building their own smart factory compared to large enterprise, to identify the current level and to present directions for implementation. IT, AT, and OT experts diagnosed 18 SMEs using the "Smart Factory Capacity Diagnosis Tool" developed for smart factory level assessment of companies. They analyzed the results and assessed the level by smart factory diagnosis categories. Companies' smart factory diagnostic mean score is 322 out of 1000 points, between 1 level (check) and 2 level (monitoring). According to diagnosis category, Factory Field Basic, R&D, Production/Logistics/Quality Control, Supply Chain Management and Reference Information Standardization are high but Strategy, Facility Automation, Equipment Control, Data/Information System and Effect Analysis are low. There was little difference in smart factory level depending on whether IT system was built or not. Also, Companies with large sales amount were not necessarily advantageous to smart factories. This study will help SMEs who are interested in smart factory. In order to build smart factory, it is necessary to analyze the market trends, SW/ICT and establish a smart factory strategy suitable for the company considering the characteristics of industry and business environment.

The necessity of Smart Factory's Standards and Certification System Based on Grounded theory (근거이론에 의한 스마트공장 표준 및 인증제도 도입 필요성)

  • Shin, Jong-Chang;Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.203-208
    • /
    • 2018
  • This study is concerned with the introduction and operation of smart factories. In order to accomplish the purpose of research, we made a standard system of smart factory and investigated the recognition system. This study was conducted as a grounded theory methodology among qualitative research methodologies. The results of the study are the necessity of a tool to appropriately evaluate the new manufacturing process management system and related management activities to achieve the successful introduction of smart factories and the management performance of the organization. In order to successfully implement the Smart Factory Certification System, it is necessary to establish a certification organization system, enact relevant laws and amendments, operate government-led pilot projects, train professional workers, and establish incentive policies.

A Study on Factors Influencing the Introduction of Smart Factory : Focusing on Small and Medium-sized Enterprises in Korea (스마트팩토리 도입시 영향을 미치는 요인에 관한 연구 : 국내 중소기업을 중심으로)

  • Kim, Hanju;Huh, Hoon;Kang, Jae Won;Boo, Jeman
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.252-261
    • /
    • 2019
  • In this study, we analyzed the factors affecting the introduction of Smart Factory by domestic SMEs through AHP analysis and tried to provide implications for the introduction of Smart Factory. It was confirmed that the manufacturing and introduction group, the non-manufacturing introduction group, and the already introduced group had the highest weight in the cost reduction in the first hierarchy standard. At this time, it can be seen that the weight for cost reduction is relatively high in the manufacturing introduction group and the introduction group, and the weight for the productivity improvement is relatively high in the non-manufacturing introduction group. It can also be seen that the portion of marketing enhancement does not have a significant impact on smart factory choices. It was confirmed that image enhancement is the highest in the manufacturing introduction group and the non-manufacturing introduction group in the first hierarchy standard, and the marketing has the highest weight in the introduction group. In the two - tiered standard, customer - friendly and proper inventory maintenance weights were relatively high in all the introduced groups, except for the high rankings.

Development of Domestic Standardization in Smart Factory and Manufacturing Data (국내 스마트공장 및 제조 데이터 표준 개발 동향)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.783-788
    • /
    • 2021
  • Smart manufacturing is defined as the fully ICT-based manufacturing process which digitized, optimized, and automized the of manufacturing system in smart factory which includes product planning, design, production, quality, stock, procure. In this paper, we introduce the development of domestic standardization of smart factory and manufacturing data which are generated in operation of smart factory. We focus on general standardization of smart factory/ICT-based manufacturing system and data transactions related issues since the range of standardization is too wide. Based on these standardization review, we discuss the several concerns for utilization of manufacturing data.

The System Architecture and Standardzation of Production IT Convergence for Smart Factory (스마트공장을 위한 IT 융합 표준화 동향 분석과 시스템 구조)

  • Cha, Suk Keun;Yoon, Jae Young;Hong, Jeong Ki;Kang, Hyun Gu;Cho, Hyeon Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • Smart factory requires 4 Zero factors including Zero Waiting-time, Zero Inventory, Zero Defect, Zero Down-time) that needs IT convergence for production resources of 4M1E(Man, Machine, Material, Method, Energy) in real time and event processing in all type of manufacturing enterprises. This paper will be explaining about core emerging production IT convergence technologies including cyber device security, 4M1E integration, real time event driven architecture, common platform of manufacturing standard applications, smart factory to-be model for small and medium manufacturing enterprises.

The Effects of Smart Factory Technologies on Quality and Innovation Performance in SMEs (중소벤처기업의 스마트팩토리 기술적용이 품질과 혁신성과에 미치는 영향)

  • Lee, Rok;Kim, Chae Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.3
    • /
    • pp.59-71
    • /
    • 2020
  • This study is empirically intended to look into the effects of smart factory technologies on quality and innovation performance in small and medium-sized Enterprises(SMEs). The research results are as follows. Device and application technologies for smart factory had a positive effect on the information quality and system quality, while platform technologies had an insignificant effect on the information quality and system quality, rejecting the effect of platform technologies for smart factory on information quality and system quality. Device technologies for smart factory had also a significant effect on innovative performance, while platform and application technologies had an insignificant effect on innovative performance, rejecting the effect of platform and application technologies for smart factory on innovative performance. The system quality had a significant effect on innovative performance, while the information quality had an insignificant effect on innovative performance. The quality played a partial mediating role in the effect of device technologies for smart factory on innovative performance. These results indicate that small and medium-sized venture firms should implement a high standard of information quality management(IQM) through interconnection as the kernel of a smart factory in the 4th revolutionary era, and that they can improve their corporate performance through the interlocking between components from manufacturing design to execution and analysis and the integrated management of systematic information collected from devices if necessary.

A Study on the Strengthening of Smart Factory Security in OT (Operational Technology) Environment (OT(Operational Technology) 환경에서 스마트팩토리 보안 강화 방안에 관한 연구)

  • Young Ho Kim;Kwang-Kyu Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.123-128
    • /
    • 2024
  • Major countries are trying to expand the construction of smart factories by introducing ICT such as the Internet of Things, cloud, and big data into the manufacturing sector to secure national-level manufacturing competitiveness in the era of the 4th industrial revolution. In addition, Germany is pushing for Industry 4.0 to build a fully automatic production system through the Internet of Things, and China is pushing for the expansion of smart factories to enhance the country's industrial competitiveness through Made in China 2025, Japan's intelligent manufacturing system, and the Korean government's manufacturing innovation 3.0. In this study, considering the increasing security connectivity of smart factories, we would like to identify security threats in the external connection part of smart factories and suggest security enhancement measures based on domestic and international standard security models to respond to the identified security threats. Eventually the proposed method can be applied by accurately identifying the smart factory security status, diagnosing vulnerabilities, establishing appropriate improvement plans, and expanding security strategies to respond to security threats.

  • PDF

Study of N-Port Electric Vehicle Charging Systems Using OPC-UA (OPC UA를 이용한 N-Port EV 충전 시스템 연구)

  • Lee, Seong Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.343-352
    • /
    • 2017
  • IEC62541, known as OPC-UA, is a standard communication protocol for Smart Grid (SG) and Smart Factory application platform. It was accepted as an IEC standard (IEC62541) in 2011 by IEC TC57, and is extending range of application as collaborating with other standrads. The government's policies to popularize EVs ("Workplace Charging Challenge"), the number of Electric vehicle which try to be charging in the factory is expected to increase. In this situation, indiscreet and uncontrolled EV charging can lead to some problems, such as excess of the peak demand capacity. Therefore, EVs, which is charging in SFs, must be monitoring and controlling to avoid and reduce peak demand. However, the standards for EVs charging differ from the standards for SFs. In other words, to increase the ease of use for drivers, and reduce risk for enterprise, we have needs of study to develop the protocols or to provide interoperability, for EVs charging in SFs. This paper deals with a EV charging management platform installing in a smart factory. And this platform can be easily integrated as part of SF management software. The main goal of this paper is to implement EV management system based on IEC61851 and IEC62541.

A Study on Application of Systems Engineering Approach to Design of Smart Manufacturing Execution System (스마트 제조 실행 시스템 기본설계를 위한 시스템 엔지니어링 적용 방법에 대한 연구)

  • Jeon, Byeong-woo;Shin, Kee-Young;Hong, Dae-Geun;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.95-105
    • /
    • 2015
  • Manufacturing Execution System(MES) is in charge of manufacturing execution in the shop floor based on the inputs given by high level information such as ERP, etc. The typical MES implemented is not tightly interconnected with shop floor control system including real (or near real) time monitoring and control devices such as PLC. The lack of real-time interfaces is one of the major obstacles to achieve accurate and optimization of the total performance index of the shop floor system. Smart factory system in the paradigm of Industry 4.0 tries to solve the problems via CPS (Cyber Physical System) technology and FILS (Factory In-the-Loop System). In this paper, we conducted Systems Engineering Approach to design an advanced MES (namely Smart MES) that can accommodate CPS and FILS concept. Specifically, we tailored Systems Engineering Process (SEP) based on an International Standard formalized as ISO/IEC 15288 to develop Stakeholders' Requirements (StR), System Requirements (SyR). The deliverables of each process are modeled and represented by the SysML, UML customized to Systems Engineering. The results of the research can provide a conceptual framework for future MES that can play a crucial role in the Smart Factory.

A Design on The Zone Master Platform based on IIoT communication for Smart Factory Digital Twin (스마트 팩토리 디지털 트윈(Digital Twin)을 위한 IIoT 통신 기반 ZMP(Zone Master Platform) 설계)

  • Park, Seon-Hui;Bae, Jong-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 2020
  • This paper creates a standard node for acquiring sensor data from various industrial sensors (IoT/non-IoT) for the establishment of Smart Factory Digital Twin, and provides inter-compatible data by linking zones by group/process to secure data stability and to ensure the digital twin (Digital Twin) of Smart Factory. The process of the Zone Master platform contains interface specifications to define sensor objects and how sensor interactions between independent systems are performed and carries out individual policies for unique data exchange rules. The interface for execution control of the Zone Master Platform processor provides system management, declaration management for public-subscribe, object management for registering and communicating status information of sensor objects, ownership management for property ownership sharing, time management for data synchronization, and data distribution management for Route information on data exchange.