• Title/Summary/Keyword: Smaller degree

Search Result 589, Processing Time 0.025 seconds

Perceived Homophily by the Degree of Self Disclosure among SNS Users (SNS 자기 노출 집단별 동질성 인식 연구)

  • Chon, Bum Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.170-178
    • /
    • 2012
  • This study examines perceived homophily by the degree of self disclosure among SNS users. In this research, there were three different groups in terms of the degree of self disclosure among SNS users such as strong, medium and weak self disclosure groups The major results are as follows: Firstly, the higher the degree of self disclosure, the more social network service use. In addition, the higher the degree of self disclosure, the smaller the degree of online activity including blog and mini web page. Secondly, the higher the degree of self disclosure, the higher the degree of socio-demographic homophily. It can be argued that the strong group had much more mean scores than that of medium and weak groups in terms of regions, gender, age and vocation except nationality. Also, the higher the degree of self disclosure, the higher the degree of shared homophily except of political opinion homophily.

A Study on the Maneuverability of a Rolling Ship under Wind Forces (풍력(風力) 및 횡요(橫搖)의 영향(影響)을 고려(考慮)한 선박(船舶)의 조종성능(操縱性能)에 관한 연구(硏究))

  • Jin-Ahn,Kim;Seung-Keon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.3-12
    • /
    • 1984
  • Up to now, it has been common to treat the maneuvering motion of a ship as a 3-degree-freedom motion i.e. surge, sway and yaw on the sea surface, for the simplicity and mathematical calculation, and it is quite acceptable in the practical point of view. Meanwhile, considering the maneuverability of a ship under the special conditions such as in irregular waves, in wind or at high speed with small GM value, it is required that roll effect must be considered in the equation of ship motion. In this paper the author tried to build up the 4-degree-freedom motion equation by adding roll. And then, applying the M.M.G.'s mathematical model and with captive model test results the roll-coupled hydrodynamic derivatives were found. With these the author could make some simulating program for turning and zig-zag steering. Through the computer simulations, the effect of roll to the ship maneuver became clear. The effect of the wind force to the maneuverability was also found. Followings are such items that was found. 1) When roll is coupled in the maneuvering motion, the directional stability becomes worse and the turning diameter becomes smaller as roll becomes smaller as roll becomes larger. 2) When maneuver a ship in the wind, the roll becomes severe and the directional stability becomes worse. 3) When a ship turns to the starboard side, the wind blowing from 90 degree direction to starboard causes the largest roll and the largest turning diameter, and the wind from other direction doesn't change the turning diameter. 4) When a ship is travelling with a constant speed with rudder amidship, if steady wind blows from one direction, the ship turns toward that wind. This phenomenon is observed in the actual seaways.

  • PDF

A Study on the Effect of the Compaction Density on the Stability of Earth Dam (흙댐의 다짐밀도가 안정도에 미치는 영향에 관한 연구)

  • 윤충섭;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.82-95
    • /
    • 1989
  • This study was carried out for the stability analysis of earth dam by the variation of compaction density. The test samples were taken from five kinds of soil used for banking material and the degree of compaction for this samples were chosen 100, 95, 90, 85, and 80 percent. The stability problems were analysed by the settlement and camber( extra banking) of dam, strength parameter and dam slope, and coefficient of permeability and seapage flow through dam body. The results of the stability analysis of earth dam are as follows. 1. The more the fine particle increases and lower the compaction degree becomes, the lower the preconsolidation load becomes but the compression index becomes higher. 2. Sixty to eighty percent of settlement of dam occurs during the construction period and the settlement ratio after completion of dam is inversly proportional to the degree of compaction. 3. The camber of dam has heigher value in condition that it has more fine particle(N) and heigher dam height(H) with the relation of H= e(aN-bH-e). 4. The cohesion(C) decreases in proportion to compaction degree(D) and fine particle(N) with the relation of C= aD+ bN-c, but the internal friction angle is almost constant regardless of change of degree of compaction. 5. In fine soil, strength parameter from triaxial compression test is smaller than that from direct shear test but, they are almost same in coarse soil regardless of the test method. 6. The safety factor of the dam slope generally decreases in proportion to cohesion and degree of compaction but, in case of coarse soil, it is less related to the degree of compaction and is mainly afected by internal friction angle. 7. Soil permeability(K) decreases by the increases of the degree of compaction and fine particle with relation of K=e(a-bl)-cN) 8. The more compaction thickness is, the less vertical permeability (Kv) is but the more h6rzontal permeability (KH) is, and ratio of Kv versus KH is largest in range from 85 to 90 percent of degree of corn paction. 9. With the compaction more than 85 percent and coefficient of permeability less than ${\alpha}$X 10-$^3$cm/sec, the earth dam is generally safe from the piping action.

  • PDF

Evaluation of dispersion degree of nanoparticles in TiO2/epoxy resin nanocomposites

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.338-344
    • /
    • 2014
  • The purpose of this study was to evaluate the dispersion degree of particles using a nanoindentation test for titanium oxide nanoparticles/epoxy resin nanocomposites. Thus, the effects of the particle size and weight fraction, dispersion agent, and position of the sample on the modulus and degree of particle dispersion in the nanocomposites were investigated. As a result, the dispersion degree of large particles was found to be better than that of smaller particles in composites. It could be found that the aggregation or agglomeration of small particles with large surface energy occurred more easily in nanocomposites because of the large specific surface area. The moduli of the upper side of the film-shaped sample obtained from a nanoindentation test were low scattering, while the values for the bottom side were high scattering. Thus, the dispersion situation of the nanoparticles on the upper side of film-shaped samples could be considered to be better than that for the bottom side. This could be concluded due to the non-uniform nanoparticle dispersion in the same sample. The modulus obtained from nanoindentation test increased slightly with the content of nanoparticles and increased with the indented depth for the same sample. The latter is presumably due to the increase in the accumulated particles facing the indenter with the indented depth. The nanoindentation test was found to be a useful method to evaluate the dispersion status of nanoparticles in nanocomposites.

Morphological Properties of Poly(ε-caprolactone) Nano/Microcapsules Prepared by Emulsion-diffusion Method (유화-확산법에 의해 제조된 폴리(ε-카프로락톤) 나노/마이크로캡슐의 형태적 특성)

  • Kim, Hea-In;Jeong, Cheon-Hee;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • Poly($\varepsilon$-caprolactone) nano/microcapsules(nmcPCL) containing phytoncide oil were synthesized by emulsion diffusion method using ethyl acetate and poly(vinyl alcohol) (PVA) as an organic solvent and an emulsion stabilizer respectively. The influence of the degree of saponofication of the PVA and the weight ratio of core to wall materials was investigated to design nanocapsules in terms of particle size, morphology, and emulsion stability. The encapsulated nmcPCL were characterized by FT-IR spectrometry, particle size analyzer and scanning electron microscope. Mean size of nanocapsules prepared with PVA with a degree of saponofication of 87% was smaller than those of PVA with a degree of saponofication of 98.5% and the mean particle size of the capsules decreased with increasing core/shell ratio.

A Kinematic Analysis of Two Hand Backhand Stroke Swings in Tennis (테니스 양손 백핸드 스트로크 스윙자세의 운동학적 분석)

  • Kang, Sang-Hack;Son, Won-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2007
  • The present study analyzed the two hand backhand stroke motion of six female high school tennis players who won the championship at the National Athletic Meeting in 2006, and drew conclusions as follows. The open angle of the racket at the moment of impact was 90 degree without significant difference among the players, making a wide contact between the ball and the racket. The racket angle was 43 degree at take back and 91 at impact, showing a style of holding the racket rather upright in general. In back swing from the top to the impact, the shoulders and the hips turned by 97 degree and 40 degree, respectively. At the moment of impact, the height of the impact was 54%H, and the position of the impact was 10%H ahead of and 37%H left from the central axis of the body. The right hand made a continental grip and the left hand made a Western or semi Western grip. Through the entire swing motion, the grip angle of the left hand was smaller than that of the right hand, and those who maintained a large grip angle of the right hand at the moment of take back put the racket head slightly farther from the body. In the swing of the racket head from the lowest point to the impact, the vertical length of movement was 11%H and the horizontal length of movement was 60%H, quite long.

Radial Thickness of Ice Jam in Channel Bends

  • Yoon, Sei-eui;Lee, Jong-tae
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.61-71
    • /
    • 1990
  • The characteristics of radial thickness of ice jam at the center part of channel bends were analyzed briefly in this paper. Jam thickness in channel bends increases both toward the inner bank, and dowmstream. For this study, slope at the jam's underside was assumed to be liner with similarity of radial slope of bed in alluvial bends. Radial slope at the jam's underside in floating ice elements was estimated using the force equilibrium theory in the radial direction. The eqution which can be estimated the radial slope of ice jam was suggested using Falcon and Kennedy's bed layer theory. Experimental data, which were measured at the center part of cross-section in a single 180-degree bend, were compared to the calculated values using the suggested equtions. The result shows that the calcultated values were smaller than the measured ones. Ot is considered that the estimated value of shear stress in the radial direction may be smaller than the actual and two-layer model may be not suibable for alluvial bend flow.

  • PDF

An Experimental Study on Condensation Characteristics at Various Condensation Pressure of R407C (응축압력 변화에 따른 R407C의 응축특성에 관한 연구)

  • 전창덕;장경근;김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • R407C is considered as alternative refrigerant of R22 for air conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerant, R407C. Experiments are carried out at condensation pressure of 2110 kPa and 1943 kPa with the degree of superheat of 1$0^{\circ}C$ and mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air condition is dry bulb temperature of 35$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.8 to 1.6 m/s. Experiments show that pressure drop gets smaller at a higher condensation pressure especially when condensation pressure is raised from 1943 to 2110 kPa. Heat transfer rate gets smaller at a lower condensation pressure in the range of experimental condition.

Experiment of small cyclone performance depending on the inlet type (입구형상에 따른 소형 사이클론의 성능 실험)

  • Kim, Min-Ha;Hur, Gwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1969-1974
    • /
    • 2004
  • The performance of small cyclone is analysed by an experiment for the purpose of developing a bag-less vacuum cleaner. For the high collection efficiency and low pressure loss cyclone, the effect of cyclone inlet feature must be well understood. Four types of the helical inlet are considered to compare with the normal tangential inlet, and also various inlet velocities are used to each inlet type. Based on the reference dimension, each type of inlet shows the changes of the grade efficiency and pressure loss which determine the cyclone quality. The results show that the helical inlet has the smaller cut-size but bigger pressure loss than the tangential inlet. And the degree of opening area influences factors of cyclone performance. As the inlet velocity is increased, the cut-size becomes smaller and the pressure loss becomes bigger of each cyclone. Further studies are required to understand the optimized helical inlet of cyclone.

  • PDF

Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation

  • Jun, Kyung-Soo;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.85-97
    • /
    • 1994
  • A hybrid finite difference method for the longitudinal dispersion equation, which is based on combining the Holly-Preissmann scheme with fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme, is described and comparatively evaluated with other characteristics-based numerical methods. Longitudinal dispersion of an instantaneously-loaded pollutant source is simulated, and computational results are compared with the exact solution. The present method is free from wiggles regardless of the Courant number, and exactly reproduces the location of the peak concentration. Overall accuracy of the computation increases for smaller value of the weighting factor, $\theta$of the model. Larger values of $\theta$ overestimates the peak concentration. Smaller Courant number yields better accuracy, in general, but the sensitivity is very low, especially when the value of $\theta$ is small. From comparisons with the hybrid method using cubic interpolating polynomial and with splitoperator methods, the present method shows the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF