• Title/Summary/Keyword: Small-scale simulation

Search Result 489, Processing Time 0.025 seconds

An Example-Based Approach to the Synthesis of Rube Goldberg Machines (루브 골드버그 기계의 합성을위한 예제 기반 접근방법)

  • Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • We present an example-based approach to synthesizing physically simulated Rube Goldberg machines in which a series of rigid body elements are sequentially triggered and driven along the causal chain. Given a set of elements, our goal is to automatically instantiate and arrange those elements to meet the user-specified requirements including the start and end positions, and the boundary of movement. To do so, we first sample small-scale machines consisting of only a few elements randomly, and represent the connectivity between every pair of components as a graph structure. Searching over possible paths in this graph solves our problem by finding a path that can be unrolled to satisfy the given requirements, and then assembling components sequentially along the solution path. In order to ensure that the machine works precisely in a physically simulated environment, we finally elaborate the layout of assembled components by a simple greedy algorithm. We demonstrate the usefulness of our approach by displaying a large diversity of Rube Goldberg machines built with only five kinds of elements.

Resource Management Scheme in Proxy-Based Mobile Grid (프록시기반 모바일 그리드에서 자원관리 기법)

  • Cho, InSeock;Lee, DaeWon;Lee, HwaMin;Gil, JoonMin;Yu, HeonChang
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.5
    • /
    • pp.67-76
    • /
    • 2008
  • Grid computing has a large scale virtual computing environment that enables a collaborative processing through sharing resources of geographically distributed organizations. In recent year, the development of wireless networks and mobile devices enables mobile devices to consider as a resource of the grids. However, there are some problems such as low performance of processors, small capacity of storages, limited capacity of battery, and low bandwidth. In this paper, to overcome these limitations occurred in mobile grid environments, we proposed a proxy-based mobile grid system. Our proposed system enables mobile devices to play roles as a resource consumer and a resource provider and to collaborate with wired grids through a mobile router. Also, we propose an adaptive job scheduling scheme to cope with context changes of mobile devices and compare our scheduling scheme with other scheduling schemes using a simulation tool, SimGrid, to verify the validity of our job scheduling scheme.

  • PDF

SBR-k(Sized-base replacement-k) : File Replacement in Data Grid Environments (SBR-k(Sized-based replacement-k) : 데이터 그리드 환경에서 파일 교체)

  • Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.57-64
    • /
    • 2008
  • The data grid computing provides geographically distributed storage resources to solve computational problems with large-scale data. Unlike cache replacement policies in virtual memory or web-caching replacement, an optimal file replacement policy for data grids is the one of the important problems by the fact that file size is very large. The traditional file replacement policies such as LRU(Least Recently Used), LCB-K(Least Cost Beneficial based on K), EBR(Economic-based cache replacement), LVCT(Least Value-based on Caching Time) have the problem that they have to predict requests or need additional resources to file replacement. To solve theses problems, this paper propose SBR-k(Sized-based replacement-k) that replaces files based on file size. The proposed policy considers file size to reduce the number of files corresponding to a requested file rather than forecasting the uncertain future for replacement. The results of the simulation show that hit ratio was similar when the cache size was small, but the proposed policy was superior to traditional policies when the cache size was large.

Numerical Investigation on a Rotor Tip-Vortex Instability in Very Low Advance Ratio Flight

  • Chung, Ki-Hoon;Hwang, Chang-Jeon;Lee, Duck-Joo;Yim, Jong-Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.84-96
    • /
    • 2005
  • Helical tip vortex is known as stable vortex structure, however the specific frequency component of far wake perturbation induces the vortex pairing in hover and axial flight. It is expected that the tip vortex pairing phenomena may happen in transition flight and very low advance ratio flight so that inflow may be most nonuniform in the low advance ratio flight. The objectives of this paper are that a tip-vortex instability during the transition from hover into very low advance ratio forward flight is numerically predicted to understand a physics by using a time-marching free-wake method. To achieve the objectives, numerical method is firstly validated in typical axial and forward flights cases. Present scheme with trim routine can predict airloads and inflow distribution of forward flight with good accuracy. Then, the transition flight condition is calculated. The rotor used in this wake calculation is a small-scale AH-1G model. By using a tip-vortex trajectory tracking method, the tip-vortex pairing process are clearly observed in transient flight($\mu$=0.03) and disappears at a slightly higher advance ratio($\mu$=0.05). According to the steady flight simulation at $\mu$=0.03, it is confirmed the tip-vortex pairing process is continued in the rear part of rotor disk and not occurs in the front part. Time averaged inflow in this case is predicted as smooth distribution.

A study on the effect of agitation speeds for the optimization of manufacturing process of autonomic microcapsules (자가치료용 마이크로캡슐 제조공정 최적화를 위한 교반속도 영향 연구)

  • Yun, Seong-Ho;Kim, Sang-Deok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.51-59
    • /
    • 2006
  • The physical characteristics of autonomic microcapsules manufactured with various agitation speeds in a stirred tank were observed experimentally by a particle size analyzer and an optical microscope. The flow characteristics in a stirred tank were also investigated through a 3-dimensional numerical simulation to understand the manufacturing process of autonomic microcapsules. According to the results, we found that the agitation speed was the important factor to determine the sizes of microcapsules. The impeller-induced flow allowed the jet and tip-vortex pair components in the mixed fluid of a stirred tank. The vorticity around the blades in the impeller was increased as increasing the agitation speed. In addition, the size of autonomic microcapsules was strongly affected on the small scale mixing pattern such as a tip-vortex pair.

Modeling and Experimental Verification of Echo Characteristics of 3 Dimensional Underwater Target (3차원 수중 표적의 반향특성 모델링과 실험적 검증)

  • You, Seung-Ki;Kim, Sunhyo;Choi, Jee Woong;Kang, Donhyug;Jeong, Dongmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • When a active sonar signal is transmitted and returned back from a target, it has been distorted by various properties of acoustic channel such as multipath arrivals. And signals have been appeared to be different form by target position and attitude. Therefore, we simulated the target echo signal using 3 dimensional target model include reflects target features. In this paper, we develop components form of a simulated target model is made up equally spaced highlight points, and each part of the target consists of shape function. We can simulate a target echo signal and Target strength (TS) according to wave incident angle. To verify, we made small scale target in kit form and we had got underwater target signal for comparing simulation result in water tank.

A Dual Slotted Ring Organization for Reducing Memory Access Latency in Distributed Shared Memory System (분산 공유 메모리 시스템에서 메모리 접근지연을 줄이기 위한 이중 슬롯링 구조)

  • Min, Jun-Sik;Chang, Tae-Mu
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.419-428
    • /
    • 2001
  • Advances in circuit and integration technology are continuously boosting the speed of processors. One of the main challenges presented by such developments is the effective use of powerful processors in shared memory multiprocessor system. We believe that the interconnection problem is not solved even for small scale shared memory multiprocessor, since the speed of shared buses is unlikely to keep up with the bandwidth requirements of new powerful processors. In the past few years, point-to-point unidirectional connection have emerged as a very promising interconnection technology. The single slotted ring is the simplest form point-to-point interconnection. The main limitation of the single slotted ring architecture is that latency of access increase linearly with the number of the processors in the ring. Because of this, we proposed the dual slotted ring as an alternative to single slotted ring for cache-based multiprocessor system. In this paper, we analyze the proposed dual slotted ring architecture using new snooping protocol and enforce simulation to compare it with single slotted ring.

  • PDF

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

A Probabilistic Handover Scheme for Enhancing Spectral Efficiency in Drone-based Wireless Communication Systems (드론 기반의 무선 통신 시스템에서 주파수 효율 향상을 위한 확률적 핸드오버 기법)

  • Jang, Hwan Won;Woo, Dong Hyuck;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1220-1226
    • /
    • 2021
  • In this paper, we propose a probabilistic handover scheme for enhancing spectral efficiency in drone-based wireless communication systems. When a moving drone base station (DBS) provides the drone-based wireless communication service to a user equipment (UE) located on the ground, our proposed handover scheme considers the distance between DBS and UE and small scale fading. In addition, our proposed handover scheme considers a handover probability to mitigate the signalling overhead that may occur when performing frequent handovers. Through simulations for drone-based wireless communication systems, we evaluate the spectral efficiency and the handover probability of our proposed handover scheme and the conventional handover scheme. The simulation results show that our proposed handover scheme can achieve higher average spectral efficiency than the conventional handover scheme which considers only the distance between DBS and UE.

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.