• Title/Summary/Keyword: Small signal control

Search Result 487, Processing Time 0.027 seconds

The Characteristics of Noise Figure in Bi-directional Fiber Ring Laser Gain Clamped EDFA (양방향 발진고리형 고정이득 EDFA에서의 잡음지수 특성)

  • Kim, Ik-Sang;Kim, Chang-Bong;Lee, Hyeon-Jae;Myeong, Seung-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.55-62
    • /
    • 2002
  • FRLGC(Fiber Ring laser Gain Clamped) EDFA Is demonstrated for an automatic gain control in hi-directional ADM(Add Drop Multiplexer) node configuration. Specifically, we investigate hi-directional characteristics of noise figure. Assuming a hi-directional small signal input, noise figures for forward or backward signal input are calculated using average inversion algorithm, according to the propagating directions and lasing wavelengths of a compensating signal. The operating condition of FRLGC-EDFA may be optimized with a backward lasing and short lasing wavelength in the aspect of hi-directional noise figure characteristics.

Control of throttle actuator system based on time delay control (시간지연제어에 기초한 스로틀액츄에이터 시스템의 제어)

  • Song, Jae-Bok;Byeon, Kyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2081-2089
    • /
    • 1997
  • Accurate positioning of the throttle valve of a gasoline engine is required to implement various systems such as traction control system(TCS), cruise control system and drive-by-wire system. In this research, position control system has been developed for the throttle actuator system that uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive the DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Also, time delay control(TDC) law has been used as a basic control algorithm. A method of varying the reference model of the TDC according to the size of change in target throttle angle is proposed here. The simulation and experimental results show that both overshoot prevention and fast response are achieved by the TDC technique with this variable reference model.

Design and Analysis of 3-Section Hybrid Control Method for Solar Array Simulator (태양광패널 모사장치를 위한 3-구역 하이브리드 제어기의 설계 및 분석)

  • Seo, Young-Tae;Wellawatta, Thusitha;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • A solar array simulator (SAS) consists of an engine that generates a setpoint according to panel characteristics, a power stage that provides the actual output, and a controller. Particularly, if the control method is not suitable due to the nonlinearity of the solar panel output curve depending on the irradiation amount and the temperature, and the variation of the curve factor depending on the various panel materials, then the panel simulation function cannot be performed properly. Current and voltage mode controls are usually used for the conventional control method. However, these control methods deteriorate the control performance near the maximum power point; thus, a hybrid control method using two or more controllers has been investigated. In this study, we analyze the hybrid control method using three controllers divided into different areas. The design equation of the controller is derived based on the small signal modeling of each controller, and the simulation performance of the solar array simulator verifies its stability and response speed.

A Stable Startup Method of V/f Scalar Controlled Permanent Magnet Synchronous Motors (V/f 스칼라 제어 영구자석 동기 전동기의 안정적 초기 구동 기법)

  • Kim, Hyeon-Seong;Lee, Sang-Min;Lee, Kibok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.395-403
    • /
    • 2020
  • This study presents a stable start-up strategy for v/f scalar-controlled permanent magnet synchronous motors (PMSMs). The v/f-controlled PMSMs easily lose synchronism under low-speed conditions if an insufficient stator voltage is applied to the machine due to errors in measured motor parameters and inverter nonlinearity, such as inverter dead time and on-state voltage drop. The proposed method adopts the I/f control method to ensure a stable start at low speeds and then switches to the v/f control method at medium speeds. A smooth transition method from I/f control to v/f control is proposed to minimize the oscillation of the stator current and rotor speed during transition. Moreover, the stability of the I/f and v/f control methods is analyzed using a small-signal model. Simulation and experimental results are provided to verify the performance of the proposed control strategy.

User Association and Base Station Sleep Management in Dense Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2058-2074
    • /
    • 2017
  • Dense Heterogeneous Cellular Networks(HCNs) offer a promising approach to meet the target of 1000x increase in aggregate data rates in 5G wireless communication systems. However how to best utilize the available radio resources at densely deployed small cells remains an open problem as those small cells are typically unplanned. In this paper we focus on balancing loads across macro cells and small cells by offloading users to small cells, as well as dynamically switching off underutilized small cells. We propose a joint user association and base station(BS) sleep mangement(UA-BSM) scheme that proactively offloads users to a fraction of the densely deployed small cells. We propose a heuristic algorithm that iteratively solves the user association problem and puts BSs with low loads into sleep. An interference relation matrix(IRM) is constructed to help us identify the candidate BSs that can be put into sleep. User associations are then aggregated to selected small cells that remain active. Simulation results show that our proposed approach achieves load balancing across macro and small cells and reduces the number of active BSs. Numerical results show user signal to interference ratio(SINR) can be improved by small cell sleep control.

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF

Digital Control for BUCK-BOOST Type Solar Array Regulator (벅-부스트 형 태양전력 조절기의 디지털 제어)

  • Yang, JeongHwan;Yun, SeokTeak;Park, SeongWoo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.135-139
    • /
    • 2012
  • A digital controller can simply realize a complex operation algorithm and power control process which can not be applied by an analog circuit for a solar array regulator(SAR). The digital resistive control(DRC) makes an equivalent input impedance of the SAR be resistive characteristic. The resistance of the solar array varies largely in a voltage source region and slightly in a current source region. Therefore when the solar array regulator is controlled by the DRC, the Advanced Incremental Conductance MPPT Algorithm with a Variable Step Size(AIC-MPPT-VSS) is suitable. The AIC-MPPT-VSS, however, using small signal resistance and large signal resistance of the solar array can not limit the absolute value of the solar array power. In this paper, the solar array power limiter is suggested and the BUCK-BOOST type SAR which is fully controlled by the digital controller is verified by simulation.

Analyses on Daylight Variations for Optimum Controls of Daylight Dimming Systems in a Small Office (소규모 사무실에 적용된 조광제어 시스템의 최적제어를 위한 주광변화 분석)

  • Yoon, Youn-Ju;Baik, Yong-Kyu;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.433-442
    • /
    • 2012
  • The influence of outdoor sky conditions on photosensor signals were examined to determine an appropriate index that is effectively used for optimum illuminance fluctuation when a daylight dimming system is used for a small office. Field measurements were conducted under various sky conditions. Results indicate that the outdoor global and vertical illuminance fluctuated within narrow ranges under clear and overcast sky conditions. The fluctuation of sky ratio under partly-cloudy sky caused wide ranges of illumnance fluctuation. A partially-shielded photosensor at backwall produced 56% of light output from fixtures controlled by a photosensor at ceiling. This implies that the photosensor at backwall does not always guarantee target illuminance due to the less output. The fluctuation of light output from fixtures were insignificant under clear and overcast sky. The fluctuation range of photosensor illuminance under partly-cloudy sky caused wide fluctuation ranges of light output. Regression result implies that the outdoor vertical illuminance was recommended for an effective index that is used for control of light output.

Handover Control for WCDMA Femtocell Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.741-752
    • /
    • 2010
  • The ability to seamlessly switch between the macro networks and femtocell networks is a key driver for femtocell network deployment. The handover procedures for the integrated femtocell/macrocell networks differ from the existing handovers. Some modifications of existing network and protocol architecture for the integration of femtocell networks with the existing macrocell networks are also essential. These modifications change the signal flow for handover procedures due to different 2-tier cell (macrocell and femtocell) environment. The handover between two networks should be performed with minimum signaling. A frequent and unnecessary handover is another problem for hierarchical femtocell/macrocell network environment that must be minimized. This work studies the details mobility management schemes for small and medium scale femtocell network deployment. To do that, firstly we present two different network architectures for small scale and medium scale WCDMA femtocell deployment. The details handover call flow for these two network architectures and CAC scheme to minimize the unnecessary handovers are proposed for the integrated femtocell/macrocell networks. The numerical analysis for the proposed M/M/N/N queuing scheme and the simulation results of the proposed CAC scheme demonstrate the handover call control performances for femtocell environment.

Study on MPPT control using current control signal (전류제어신호를 이용한 MPPT제어기에 대한 연구)

  • Kang, T.K.;Kang, J.S.;Koh, K.H.;Kwon, S.K.;Shu, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.280-282
    • /
    • 2005
  • This paper proposes a simple MPPT control scheme of a Current-Control-Loop Error system Based that can be obtains a lot of advantage to compare with another digital control method, P&O and IncCond algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment on battery charger using PIC that is the microprocessor of a low price.

  • PDF