• Title/Summary/Keyword: Slurry TBM

Search Result 30, Processing Time 0.023 seconds

Prediction of tunneling parameters for ultra-large diameter slurry shield TBM in cross-river tunnels based on integrated algorithms

  • Shujun Xu
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.69-77
    • /
    • 2024
  • The development of shield-driven cross-river tunnels in China is witnessing a notable shift towards larger diameters, longer distances, and higher water pressures due to the more complex excavation environment. Complex geological formations, such as fault and karst cavities, pose significant construction risks. Real-time adjustment of shield tunneling parameters based on parameter prediction is the key to ensuring the safety and efficiency of shield tunneling. In this study, prediction models for the torque and thrust of the cutter plate of ultra-large diameter slurry shield TBMs is established based on integrated learning algorithms, by analyzing the real data of Heyan Road cross-river tunnel. The influence of geological complexities at the excavation face, substantial burial depth, and high water level on the slurry shield tunneling parameters are considered in the models. The results reveal that the predictive models established by applying Random Forest and AdaBoost algorithms exhibit strong agreement with actual data, which indicates that the good adaptability and predictive accuracy of these two models. The models proposed in this study can be applied in the real-time prediction and adaptive adjustment of the tunneling parameters for shield tunneling under complex geological conditions.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Suggestion of empirical formula between FPI and specific energy through analysis of subsea tunnel excavation data (해저 터널 굴진자료 분석을 통한 FPI와 비에너지의 경험식 제시)

  • Kim, Kyoung-Yul;Bae, Du-San;Jo, Seon-Ah;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • The construction of subsea tunnel differs from that of inland tunnel because of high water pressure due to sea water level and difficulties to reinforce the ground under construction. Therefore, it is very important to prevent trouble in advance when the subsea tunnel is constructed. In this paper, we established lots of databases about characteristics of geological and mechanical parameters on the construction of subsea tunnel using micro slurry TBM which depth is about 60 m. The correlation analysis is conducted to confirm the effect of thrust, torque and RPM among the excavation database on the net penetration rate. Also, An empirical formula is suggested to predict the net penetration rate through the correlation analysis between FPI (Field Penetration Index) and specific energy from the subsea tunnel excavation database.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

A study on the machine load on shield advancing between soil ground and mix ground included core stone (토사지반과 핵석이 포함된 복합지반에서 쉴드TBM 굴진 시 장비부하에 관한 연구)

  • Kim, Ki-Hwan;Kim, Hyouk;Mun, Cheol-Hwa;Kim, Young-Hyu;Kim, Dong-Ho;Lee, Jae-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1039-1048
    • /
    • 2018
  • In urban tunnel construction, most of the Shield TBM method is applied to secure the safety of buildings and to minimize risks. On the other hand, in the urban development process, landfills are often embanked or improving in many cases, so that the boundary between the surface and the rock is often heterogeneous. In case of ground condition such as alluvial soil, granite, decomposed granite, core stone and rock with various layers, datas on shield TBM advancing according to each ground condition are analyzed, The characteristics of machine load were compared and analyzed. As a result, it can be predicted that the change of ground condition can be predicted by the tendency of discharge volume, thrust force and cutting wheel torque when the cutter is checked and replaced regularly on advancing under maintaining the design slurry pressure.

Infiltration behavior and face stability of carbonate-added slurry shield tunnel (탄산을 첨가한 슬러리 쉴드 터널에서의 침투 거동 및 굴진면 안정성 평가)

  • Lee, Ik-Bum;Choi, Ki-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.401-413
    • /
    • 2013
  • Slurry shield tunnelling ensures stability by pressurizing the tunnel face with the slurry contained in the chamber. It resists water and earth pressure in order to prevent the failure in the tunnel face during tunnel excavation. If the ground is relatively coarse, slurry can not clog the tunnel face and excessive slurry infiltration will occur. In this case chemical compounds or additives should be added to the slurry in order to improve the clogging phenomena at the tunnel face. In this study, the effect of the carbon dioxide gas as an additive to the slurry instead of chemical compounds on the capability of enhancing the clogging in the tunnel face is investigated. Bubbles arising from the carbonate-added slurry are trapped in the soil voids enhancing the clogging capability. This effect is studied in this paper by performing laboratory model tests simulating in-situ conditions, and by adopting the fine particle clogging theory. Tunnel face stability analysis was also performed and it was found that the effective size ($D_{10}$) of soils which can guarantee tunnel stability utilizing the carbonate-added slurry increased from 1.0 mm up to 2.6 mm. Moreover, Stability analysis showed that the tunnel face is stable if the ${\lambda}$(deposition coefficient) value is greater than $0.007sec^{-1}$.

Overall risk analysis of shield TBM tunnelling using Bayesian Networks (BN) and Analytic Hierarchy Process (AHP) (베이지안 네트워크와 AHP (Analytic Hierarchy Process)를 활용한 쉴드 TBM 터널 리스크 분석)

  • Park, Jeongjun;Chung, Heeyoung;Moon, Joon-Bai;Choi, Hangseok;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.453-467
    • /
    • 2016
  • Overall risks that can occur in a shield TBM tunnelling are studied in this paper. Both the potential risk events that may occur during tunnel construction and their causes are identified, and the causal relationship between causes and events is obtained in a systematic way. Risk impact analysis is performed for the potential risk events and ways to mitigate the risks are summarized. Literature surveys as well as interviews with experts were made for this purpose. The potential risk events are classified into eight categories: cuttability reduction, collapse of a tunnel face, ground surface settlement and upheaval, spurts of slurry on the ground, incapability of mucking and excavation, and water leakage. The causes of these risks are categorized into three areas: geological, design and construction management factors. Bayesian Networks (BN) were established to systematically assess a causal relationship between causes and events. The risk impact analysis was performed to evaluate a risk response level by adopting an Analytic Hierarchy Process (AHP) with the consideration of the downtime and cost of measures. Based on the result of the risk impact analysis, the risk events are divided into four risk response levels and these levels are verified by comparing with the actual occurrences of risk events. Measures to mitigate the potential risk events during the design and/or construction stages are also proposed. Result of this research will be of the help to the designers and contractors of TBM tunnelling projects in identifying the potential risks and for preparing a systematic risk management through the evaluation of the risk response level and the migration methods in the design and construction stage.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.