• Title/Summary/Keyword: Slump Test

Search Result 411, Processing Time 0.023 seconds

Mechanical & Physical Properties of Flowable Fill Using Bottom Ash (폐석탄회를 사용한 저강도충전재의 물리.역학적 특성)

  • 원종필;이용수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.915-920
    • /
    • 2000
  • The effectiveness of bottom ash on the slump flow, compressive strength of flowable fill is investigated in this study. This study was undertaken on the use of bottom ash as a fine aggregate in flowable fill. Bottom ash is combined with portland cement, fly ash, and water to flowable fill with slump flow(20~30cm). Four different level of bottom ash with fly ash contents, 25%, 50%, 75%, 100% are investigated. Laboratory test results conclude that the inclusion of bottom ash increases the demand for mixing water n obtaining the require slump flow.

Properties of Fresh Concrete with Recycled fine Aggregates (순환잔골재를 사용한 굳지 않은 콘크리트의 특성)

  • Choi, Ki-Sun;You, Young-Chan;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.373-376
    • /
    • 2008
  • The objective of this study is to investigate the properties of fresh concrete with recycled fine aggregates. Three different kinds of fine aggregate with natural, high and low quality recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled fine aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of the concrete mixtures with constant slump is not affected by the replacement ratio of recycled fine aggregate. Therefore, the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

  • PDF

Experimental Study on the Effect of the Amount of Acrylic Viscosity Agent on the Physical Properties of High-Fluidity Concrete using Low-Binder (아크릴계 증점제 사용량이 저분체 고유동 콘크리트의 물리적 특성에 미치는 영향에 관한 실험적 연구)

  • Ko, Hye-Bin;Kong, Tae-Woong;Cho, In-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.72-73
    • /
    • 2021
  • For the development of high-fluidity concrete using low-binder, The effect of the use of the developed acrylic viscosity agent on the physical properties of concrete evaluated. The amount acrylic viscosity agent used was 1.5%, 1.7%, and 2.0% based on the binder amount of 400kg/m3, and slump flow test, slump flow 500mm arrival time measurement, air volume measurement, and U-Box passing test were conducted to determine the effect of the physical properties of concrete. it was judged that 1.5% of the acrylic viscosity agent used in high-fluidity concrete using low-binder was most suitable.

  • PDF

Workability Characteristics of Fiber Mixed Soil (섬유 보강 혼합토의 워커빌리티 특성)

  • Song, Gyoo Bog;Lee, Sang Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • This study was conducted by the slump test and the consistency test of the fiber mixed soil which is soil reinforced with fiber as a reinforced material to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establishes the work standard of the fiber mixed soil. In conclusion, in this study the slump value of the fiber mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the fiber mixed soil would be fine when it has the about 25 % water content and the wall and floor plastering work is the about 30 % ~ 35 % and the flowing and pouring work is the about 40 % water content as well as the mold compacting work is the about 20 %. There is no decreasing of the workability when the soil is reinforced by the fiber because the workability characteristics of the fiber mixed soil is similar to the one of the soil. Therefore, It is estimated that using the fiber as a reinforced material of soil would be appropriate for the construction.

Workability Characteristics of Cement-Mixed Soil for Architecture (건축용 시멘트 혼합토의 워커빌리티 특성)

  • Lee Sang-Ho;Kim Sang-Chul;Kim Jin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • This study was conducted by the slump test and the consistency test of the cement mixed soil which is soil mixed with cement to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establish the work standard of the cement mixed soil. In conclusion, in this study the slump value of the cement mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the cement mixed soil which is mixed with 6% and 9% cement would be fine when it has the $25%{\sim}27%$ water content and the wall plastering work is the $30%{\sim}32%$ and the floor plastering work is the $30%{\sim}35%$ and the flowing and pouring work is the $40%{\sim}42%$ water content as well as the mold compacting work is the 20%.

Method for estimating workability of self-compacting concrete using mixing process images

  • Li, Shuyang;An, Xuehui
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.781-798
    • /
    • 2014
  • Estimating the workability of self-compacting concrete (SCC) is very important both in laboratories and on construction site. A method using visual information during the mixing process was proposed in this paper to estimate the workability of SCC. First, fourteen specimens of concrete were produced by a single-shaft mixer. A digital camera was used to record all the mixing processes. Second, employing the digital image processing, the visual information from mixing process images was extracted. The concrete pushed by the rotating blades forms two boundaries in the images. The shape of the upper boundary and the vertical distance between the upper and lower boundaries were used as two visual features. Thirdly, slump flow test and V-funnel test were carried out to estimate the workability of each SCC. Finally, the vertical distance between the upper and lower boundaries andthe shape of the upper boundary were used as indicators to estimate the workability of SCC. The vertical distance between the upper and lower boundaries was related to the slump flow, the shape of the upper boundary was related to the V-funnel flow time. Based on these relationships, the workability of SCC could be estimated using the mixing process images. This estimating method was verified by three more experiments. The experimental results indicate that the proposed method could be used to automatically estimate SCC workability.

An Experimental study on the Structure Application of High Strength Ready Mixed Concrete -part1:Properties of Fresh State- (고강도 레미콘의 구조체 적용에 관한 실험적 연구 -제1보:굳지 않은 상태의 특성-)

  • 이진규;김기철;윤기원;연흥흠;최강순;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.14-17
    • /
    • 1995
  • This study is designed for producing and analyzing the structure application properties of the ready mixed concrete of specified concrete strength about 400kg/$\textrm{cm}^2$ in the batcher plant. And this part is designed for analyzing to the slump, slump flow, air content and unit weight in fresh state. By the test results of fresh concrete state, the slump, slump flow and air content are decreased, but unit weight is increased while open time is passed.

  • PDF

Improvement of Properties of High Strength Concrete Using Fly Ash and Gypsum (플라이 애시 및 석고를 활용한 고강도 콘크리트의 성능개선)

  • 김기형;최재진;최연왕
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.99-105
    • /
    • 1999
  • In producing high strength concrete, the most practical method is to use high range water reducing admixture(HRWR). Workabili쇼 of concrete using HRWR varies rapidly with elapsed time after mixing. Effects of fly ash and gypsum on slump loss and compressive strength of concrete were examined by experiment in this study. The slump loss of high strength concrete was reduced with increase of substitution ratio of fly ash. When 2~4% gypsum of cement weight was applied, the reduction of slump loss was not prominent and strength increase appeared at all test ages.

Comparison Analysis of Fiber Distribution and Workability for Amorphous Steel Fiber Reinforced Concrete (비정질강섬유 보강콘크리트 작업성 및 섬유 분산성 비교분석)

  • Kim, Byoung-Il;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.47-57
    • /
    • 2014
  • The research was conducted to analyze workability and fiber distributions of amorphous steel fiber reinforced concrete by changing fiber length and fiber addition ratio. The inverted slump cone and vebe tests as well as slump test was performed to understand the fluidity of amorphous steel fibers which have quite different appearance compared to conventional steel fibers. Test results showed that thin plate type of amorphous steel fibers required different test approach to figure out workability since the reduction of workability from slump test was different that from inverted slump cone and vebe tests. In conclusion, fluidity of amorphous steel fibers to concrete was significantly degraded as fiber length and addition ratio increase. Also, fibers space in cement matrix was apparently reduced as the increase of fiber length and addition ratios without fiber balling.

Determination of DEM Input Parameters for Dynamic Behavior Simulation of Aggregates (골재의 동적 거동 모사를 위한 DEM 입력변수의 결정 연구)

  • Yun, Tae Young;Yoo, Pyeong Jun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • PURPOSES : Evaluation of input parameters determination procedure for dynamic analysis of aggregates in DEM. METHODS : In this research, the aggregate slump test and angularity test were performed as fundamental laboratory tests to determine input parameters of spherical particles in DEM. The heights spreads, weights of the simple tests were measured and used to calibrate rolling and static friction coefficients of particles. RESULTS : The DEM simulations with calibrated parameters showed good agreement with the laboratory test results for given dynamic condition. CONCLUSIONS : It is concluded that the employed calibration method can be applicable to determine rolling friction coefficient of DEM simulation for given dynamic conditions. However, further research is necessary to connect the result to the behavior of aggregate in packing and mixing process and to refine static friction coefficient.