• Title/Summary/Keyword: Slope method

Search Result 2,538, Processing Time 0.028 seconds

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

Development of a Method for Detecting Unstable Behaviors in Flume Tests using a Univariate Statistical Approach

  • Kim, Seul-Bi;Seo, Yong-Seok;Kim, Hyeong-Sin;Chae, Byung-Gon;Choi, Jung-Hae;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • We describe a method for detecting slope instability in flume tests using pore pressure and water content data in conjunction with a statistical control chart analysis. Specifically, we conducted univariate statistical analysis on x-MR control chart data (pore pressure and water content) collected at several points along the flume slope, which we separated into three parts: upper, middle, and lower. To assess our results in the context of landslide forecasting and warning systems, we applied control limit lines at $1{\sigma}$, $2{\sigma}$, and $3{\sigma}$ levels of uncertainty. In doing so, we observed that dispersion time varies depending on the control limit line used. Moreover, the detection of instabilities is highly dependent on the position and type of sensor. Our findings indicate that different characteristics of the data on various factors predict slope failure differently and these characteristics can be identified by univariate statistical analysis. Therefore, we suggest that a univariate statistical approach is an effective method for the early detection of slope instability.

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF

Influence of Soil Nailing Angle on Slope Reinforcement Effect by Finite Difference Analysis (유한차분해석을 통한 쏘일네일링 설치각도가 사면 보강효과에 미치는 영향)

  • You, Kwang-Ho;Min, Kyoung-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.27-36
    • /
    • 2013
  • LEM (Limit Equilibrium Method) based programs are commonly used for the designs of soil nailing as a slope reinforcement. However, there is a drawback that the interaction between ground and soil nailing is not properly reflected in those programs, which needs to be solved. For economical constructions and designs, research is also required on the support pattern of soil nailing. In this study, therefore, reinforcement effects of soil nailing were compared and analyzed by performing finite difference analyses which could properly consider the interaction between ground and soil nailing. As a result, when the angle from slope to nail is $90^{\circ}$, failure slip surface becomes the largest and thus the factor of safety becomes maximum.

Determination Technique of Cut-Slope Reinforcing Method Considering the Effect Factor (영향인자를 고려한 절토사면 보강공법 선정기법)

  • Han, Jung-Geun;Lee, Jong-Young;Lee, Myung-Ho;Choi, Poong-Kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2007
  • Analysis was performed using AHP (Analytic Hierarchy Process) technique for the determination of priority on the effect factors and the preferences on cut-slope reinforcing methods. The results from professional group, such as researchers, design engineers and construction engineers, show that stability, durability and environmental condition are the most important effect factors. The retaining wall and the cutting methods were predominant for stability, economical efficiency, and maintenance/management in the evaluation of preferences on the cut-slope reinforcing methods interpreted for the increasing method of safety factor.

  • PDF

An Evaluation Method for Three-Dimensional Morphologies of Discontinuities considering the Shear Direction

  • Zhang, Qingzhao;Luo, Zejun;Pan, Qing;Shi, Zhenming;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.85-99
    • /
    • 2022
  • Rock discontinuities, as weak interfaces in rock, control mechanical properties of rock mass. Presence of discontinuities complicates the engineering properties of rock, which is the root of anisotropy and heterogeneity that have nonnegligible influences on the rock engineering. Morphological characteristics of discontinuities in natural rock are an important factor influencing the mechanical properties, particularly roughness, of discontinuities. Therefore, the accurate measurement and characterization of morphologies of discontinuities are preconditions for studying mechanical properties of discontinuities. Taking discontinuities in red sandstone as research objects, the research obtained three-dimensional (3D) morphologies of discontinuities in natural rock by carrying out 3D morphological scanning tests. The waviness and roughness were separated from 3D morphologies of rock discontinuities through wavelet transform. In addition, the calculation method for the overall slope root mean square (RMS) as well as slope RMSs of waviness and roughness of 3D morphologies of discontinuities considering the shear direction was proposed. The research finally determined an evaluation method for 3D morphologies of discontinuities by quantitatively characterizing 3D morphologies with the mean value of the three slope RMSs.

The Effect on Muscle Activation in the Trunk and Lower Limbs While Squatting with Slope-whole-body Vibration (스쿼트 동작 시 경사기능전신진동기의 적용이 몸통 및 하지 근 활성도에 미치는 영향)

  • Oh, Ju-Hwan;Kang, Seung-Rok;Kwon, Tae-Kyu;Min, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of dynamic squats with slope-whole body vibration (WBV) on the trunk and lower limb in muscle activities. Method : 9 healthy women (age: $21.1{\pm}0.6years$, height: $160.5{\pm}1.4cm$, body weight: $50.5{\pm}2.4kg$) were recruited for this study. Muscle activities in the trunk and lower limb muscles, including biceps femoris (BF), rectus femoris (RF), rectus abdominum (RA), gastrocnemius (GCM), iliocostalis lumborum (IL) and tibialis anterior (TA), were recorded using an EMG measurement system. The test was performed by conducting dynamic squats with slope-WBV using frequency (10Hz, 50Hz), amplitude (0.5mm), and degree ($0^{\circ}$, $5^{\circ}$). Experimental method consisted of 2-pre-sessions and 1-test-session for 20 seconds. Results : The results showed that the muscle activities of the trunk and low limb muscles increased significantly with the $5^{\circ}$ slope and lower frequency (10Hz) except for in the TA. From this result, we confirmed that the slope and WBV could efficiently affect stimulation, enhancing muscle activities by facilitating neural control trail and muscle chain tightness. Conclusion : Utilizing the slope-WBV device while squatting could give positive effects on muscle activation in the trunk and lower limb muscles and provide neural stimulation, enhancing muscle chain of control subsystem through TVR (tonic vibration reflex).

Plant Community Structure by the Slope and Altitude of Tongdaesan Area in Odaesan National Park (오대산 국립공원 동대산지역의 사면. 해발고에 따른 식물군집구조)

  • Lee, Kyong-Jae;Cho, Woo;Hwang, Seo-Hyun;Yim, Kyong-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.9 no.2
    • /
    • pp.133-146
    • /
    • 1996
  • This study was conducted to analyse plant community structure by the altityed and slope in Tongdaesan area, Odaesan National Park. Sixty-three plots(each plots size was 100m$^{2}$) were set up and PWINSPAN and DCA method were used for vegetational structure analysis. Division of community was cleared altitude than part of slope With increasing elevation the importance values of Quercus mongolica, Tilia amurensis increased, while those of Fraxinus mandshurica, Betula schmidtii, Cornus controversa decreased. Survey plots were divided into 6 groups by the TWINSPAN and DCA method. The divided groups are T. amurensis community(I), Q. mongolica community(II) of upper part of slope of east and west, Q. mongolica-T. amurensis community(III) of middle part of slope, Q. mongolica-F. mandshurica community(IV), Pinus densiflora-B. schmidtii-Carpinus laxiflora community(V) of low elevation of east, F. mandshurica-C. controversa community(VI)of low elevation of west. Also, vegetational change were showed slope of east and west in Tongdaesan except top area for the last twenty yeras.

  • PDF

Research about Application Possibility of Afforestation Reinforced Soil Steep Slope by Nonwoven Geotextile (부직포를 활용한 급경사 녹화보강토공법의 적용 가능성에 관한 연구)

  • Cho, Yong-Seong;Koo, Ho-Bon;Lee, Choon-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.239-245
    • /
    • 2006
  • The steep slopes have been increased of new roads, industrial site development and large scale residential development. The preservation administration and steep slope construction are currently investigated by many researchers in Korea. However, concrete retaining wall or reinforced soil (i.e. Block or Pannel) are being applied for the steep slope, which results in the front face form of the structure being limited. This research investigates the method that can make up afforestation environment-friendly circumstances during the construction of steep slope structure. It is considered that steep slope reinforced structure would be possible based on the monitoring results about earth pressure, horizontal displacement and consolidation quality generated during the construction of whole constructing reinforced structure. Also, there no problems in grassy surface, drainage, and deformation in spite of rainy season after construction period and until now. So that the seeding soil layer surface reinforced soil method could be adopt for steep slope reinforced structure and others.

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.