• Title/Summary/Keyword: Slope maintenance

Search Result 197, Processing Time 0.026 seconds

A Study on Optimal Preventive Maintenance Policy When Failure Rate is Exponentially Increasing After Repair (수리 후 고장률이 지수적으로 증가하는 경우에 최적 예방보전 정책)

  • Kim, Tae-Hui;Na, Myung-Hwan
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.167-176
    • /
    • 2011
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal periodic time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost per unit time.

Soil displacement from frost heave on forest road cut-slopes

  • Lee, Myeong-Kyo;Lee, Joon-Woo;Choi, Sungmin;Kim, Hyoun-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • The frost heave process from repeated freezing and thawing actions in winter on forest road cut-slopes is important for forest road maintenance and management. This study investigated the damages of the forest heave process on forest road cut-slopes by measuring the changes in the road-cut surface elevation and sediment production and by conducting vegetation surveys which were aimed at providing information for forest road maintenance plans. The temperature and humidity differences were determined between the north and south cut-slopes. T-test showed that the north slope had a lower temperature and humidity than that of the south slope. Field observations also confirmed frozen soils on the north slopes, indicating that the north slopes are susceptible to frost heave. Sediment was converted to dry weight per unit area ($g/m^2$). T-test showed that the north slope produced more sediment than that of the south slope. The study confirmed that more frost heave occurred on the north cut-slopes than on the south cut-slopes. Vegetation surveys were conducted on five cut-slope plots. Considering the dominant species found above the cut-slopes, vegetations in all the plots are expected to succeed to pine and oak in the future. The dominant species appearing on the cut-slopes of the study area were exotic species because the elapsed time of the site was only 2 - 4 years.

주기적 예방보전의 최적정책에 관한 연구

  • Na Myeong Hwan;Son Yeong Suk;Kim Mun Ju
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.115-120
    • /
    • 2005
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal period time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost rate per unit time. Finally, it suppose that the failure time of a system has a Weibull distribution as an example and we obtain an expected cost rate per unit time the optimal period time and the number when cost of replacement and cost of minimal repair change.

  • PDF

A Study on the Status Analysis of Cut Slope in Gyeongnam Region (경남지역 절취사면의 현황분석에 관한 연구)

  • Park, Jin-Kyu;Park, Choon-Sik;Jang, Jeong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.862-869
    • /
    • 2005
  • This study examined 233 cut slopes in Gyeongnam region; evaluated hazards and slope conditions involved in the slope; and determined the priority order for reinforcement. The conclusions are summarized in the following. (1) The slopes that need reinforcement or maintenance are 153, accounting for 65.6% of the entire slopes. Slopes with a length of $0{\sim}200m$ account for 70.9%; slopes with a height of $10{\sim}20m$ account for over 50%. (2) Slopes with slope of more than 1:0.5 account for 70.9% of the entire slopes. The steepness of the slope is owing to more rock slopes than soil slopes. (3) The percentages of rock slopes, soil slopes, complex slopes mixed with rocks and soil, and slopes comprised of igneous rocks are 54.4%, 24.9%, 20.7%, and 54.1%, respectively. (4) In the rock area occurred cave-in, plain failure, wedge failure, and overturning failure, in order. Slopes with volcanic rocks are the most unstable, while sedimentary rocks and metamorphic rocks are relatively stable. (5) When the slope height is over 20m, low grade slopes are more than 80%; leading to the conclusion that the higher the slope height is, the more unstable the slope is.

  • PDF

A Study on the Selection of Factors for Evaluating the Efficiency of Slope Reinforcement Using AHP (AHP 분석을 활용한 비탈면 보강공 성능평가를 위한 중요항목 도출에 관한 연구)

  • Lee, Jonghyun;Kim, Oil;Kim, Jinhwan;Kim, Wooseok;Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.531-539
    • /
    • 2019
  • Various slope protect systems are applied to the slope located around the major facility to maintain stability, and the applied these systems play an important role in protecting the structure by ensuring the safety of the slope. Reinforcement techniques ensure complete safety at the time of application to the slope, but over time, it may become difficult to secure safety. In particular, the deterioration of reinforcement systems may significantly reduce the stability of the slope. Therefore, it is necessary to secure the safety of the slope by defining the necessary items for maintenance of the protect systems and verifying them by the field expert. In this study, a group of experts were formed to determine these items and select their importance among them, and based on their data, the importance of each item was selected by Analytic Hierarchy Process (AHP). The selected items are expected to play an important role in the maintenance of reinforcement systems applied to the slope based on the survey items used by experts.

A Study on Embankment Slope Management System (성토사면유지관리시스템 개발에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Lee, Jung-Yup;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.749-758
    • /
    • 2010
  • Embankment Slope (or Fill Slope) is defined as artificial slope formed by the filling of soil or rocks on the original ground. Recently a lot of embankment failures and collapse has occurred due to the increase of torrential rainfall and typhoons. Embankment collapse has lead to a great loss of lives and property therefore there is a need to establish a systematic embankment slope management system that will handle the maintenance and repair of risky embankment slopes. The objective of this study is to establish an "Embankment Slope Management Method" for embankment slopes located along national highways all over Korea. The method for field investigation of embankment slopes was recommended and the system for investment priority determination was also developed. The factors that lead to the collapse of embankment slopes caused by natural calamities were also determined through the initial survey of embankment slopes located along river fronts and mountainous areas.

  • PDF

Analysis and development of measurement systems for tunnels and slopes under a high velocity (고속주행을 고려한 터널 및 사면의 계측시스템 분석 및 개선 방안 연구)

  • Chung, Jae-Hoon;Park, Yoon-Je;Lee, Rae-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1376-1381
    • /
    • 2010
  • In this study, we dealt with an analysis and development of measurement systems for tunnel and slope structures under a high velocity. Deterioration of tunnel and slope structures becomes a critical issue in regard to both safety and economic concerns. Deterioration itself is inevitable, but condition assessment technology and nondestructive evaluation techniques could provide solutions to ensure public safety by means of detecting damage before serious and expensive degradation consequences occur. We reviewed the existing monitoring and maintenance systems of slopes and tunnels and more advanced directions, especially for highways under high-speed vehicles.

  • PDF

Development of Strengthening Method and Safety Analysis of Ecological Block and Vegetation Bank Protection (식생블록옹벽의 구조적 안전성 해석과 보강설계기법 연구)

  • Oh, Byung-Hwan;Cho, In-Ho;Lee, Young-Saeng;Lee, Keun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.207-215
    • /
    • 2003
  • Developed is a new environment-friendly concrete-block retaining wall system. The conventional analysis methods are not directly applicable because the proposed concrete-block wall system is made of by interlocking the blocks with shear keys. Therefore, the shear analysis as well as stability analysis have been conducted to secure the safety of block-wall system. Overall slope stability analysis was also performed. An appropriate strengthening method was developed to ensure the safety when the block-wall system is relatively high. The method of analysis for strengthening the concrete-block wall system was also proposed. The proposed environment-friendly concrete block retaining wall system shows reasonable safety and can be a good construction method for retaining walls and river bank walls.

Development of Unmanned Cleaning Robot for Photovoltaic Panels (태양광발전시설 무인 유지보수 로봇 개발)

  • Lee, Hyungyu;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.