• Title/Summary/Keyword: Slope Structure

Search Result 933, Processing Time 0.036 seconds

Numerical analysis on stability of express railway tunnel portal

  • Zhou, Xiaojun;Hu, Hongyun;Jiang, Bo;Zhou, Yuefeng;Zhu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • On the basis of the geological conditions of high and steep mountainous slope on which an exit portal of an express railway tunnel with a bridge-tunnel combination is to be built, the composite structure of the exit portal with a bridge abutment of the bridge-tunnel combination is presented and the stability of the slope on which the express railway portal is to be built is analyzed using three dimensional (3D) numerical simulation in the paper. Comparison of the practicability for the reinforcement of slope with in-situ bored piles and diaphragm walls are performed so as to enhance the stability of the high and steep slope. The safety factor of the slope due to rockmass excavation both inside the exit portal and beneath the bridge abutment of the bridge-tunnel combination has been also derived using strength reduction technique. The obtained results show that post tunnel portal is a preferred structure to fit high and steep slope, and the surrounding rock around the exit portal of the tunnel on the high and steep mountainous slope remains stable when rockmass is excavated both from the inside of the exit portal and underneath the bridge abutment after the slope is reinforced with both bored piles and diaphragm walls. The stability of the high and steep slope is principally dominated by the shear stress state of the rockmass at the toe of the slope; the procedure of excavating rockmass in the foundation pit of the bridge abutment does not obviously affect the slope stability. In-situ bored piles are more effective in controlling the deformation of the abutment foundation pit in comparison with diaphragm walls and are used as a preferred retaining structure to uphold the stability of slope in respect of the lesser time, easier procedure and lower cost in the construction of the exit portal with bridge-tunnel combination on the high and steep mountainous slope. The results obtained from the numerical analysis in the paper can be used to guide the structural design and construction of express railway tunnel portal with bridge-tunnel combination on high and abrupt mountainous slope under similar situations.

On determining seismic anchor force of anchoring frame structure supporting three-stage slope

  • Lin, Yu-liang;Lu, Li;Li, Ying-xin;Xue, Yuan;Feng, Zhi-jun;Wang, Zhi-meng;Yang, Guo-lin
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • As a flexible supporting structure, the anchoring frame structure is widely adopted to support multistage slopes in high earthquake-intensity area for its effectiveness and practicality. The previous study indicates that the anchor of anchoring frame structure is the most likely to be damaged during earthquakes. It is crucial to determine the pull-out capacity of anchor against seismic force for the seismic design of anchoring frame structure. In this study, an analytical model of a three-stage slope supported by anchoring frame structure is established, and the upper bound method of limit analysis is applied to deduce the seismic anchor force of anchoring frame structure. The pull-out capacity of anchor against seismic force of anchoring frame structure at each stage is obtained by computer programming. The proposed method is proved to be reasonable and effective compared with the existing published solution. Besides, the influence of main parameters on the pull-out capacity of anchor against seismic force is analyzed to provide some recommendations for the seismic design of anchoring frame structure.

Full Scale Load Tests on Reinforced Slope Structure (사면보강구조물에 대한 실물재하시험과 평가)

  • Kwon, Young-Ho;Park, Shin-Young;Lee, Seung-Hyun;Kang, In-Kyu;Ki, Min-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.241-255
    • /
    • 2006
  • Owing to a landslide or embankment damage be caused by a localized torrential downpour and heavy snowfall resulted from recent abnormal climate, a slope stability is very important. This study is investigate a general slope reinforcement method and applicability improvement of soil nailing method utilized prototype loading test for the facing stiffness effect confirmation. A prototype loading test supplements general slope stability study by numerical analysis or laboratory test with a resonable analysis of slope structure.

  • PDF

Rail Transport Operation Control for Railway Embankment under rainfall (강우시 성토사면의 열차운전규제기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

The Prediction of Cutting Slope Failure of Forest Road (임도(林道) 절토사면(切土斜面)의 붕괴위험(崩壞危險) 예측(豫測)에 관한 연구)

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.145-156
    • /
    • 1998
  • On the basis of data obtained from 5 forest roads(Backyang, Byongatae, Saorang, Bukyu and Dangrim forest road) collapsed under a heavy rainfall in Chunchon, Kangwondo, this study was carried out to predict the cutting slope failure of forest road by using Quantification theory(II). The results were summarized as follows; The cutting slope failure was chiefly occurred by correlated action of road structure, vegetation and topographical factors. The cutting slope failure predicted by partial correlation coefficients and range values was characterized by longer than 8m of cutting slope length, depper than 2.5m of soil depth, between $30^{\circ}$ and $50^{\circ}$ of original ground slope gradient, absence of vegetation coverage on cutting slope, and greater than $60^{\circ}$ of cutting slope gradient. And the rate of correct discrimination by analysis of cutting slope failure was 90.1%.

  • PDF

A Comparative Study on the Structure of Forest Vegetation at the Southern and Northern Slopes of Mt. Kum in Namhae (금산(錦山)의 남북사면(南北斜面)에 따른 삼림식생(森林植生) 구조(構造))

  • Shin, Hyeon Cheol;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.245-254
    • /
    • 1990
  • This study was carried out to analysis the structure of forest vegetation at the southern and northern slopes of Mt. Kum in Namhae. The results obtained were summarized as follows : The upper layer of south slope at the altitude of 100m was only distributed at Pinus thunbergii and Pinus densiflora. According to increase of altitude, the importance value of Pinus thunbergii was more decreased. In the upper layer of north slope, importance value of Pinus thunbergii was very high in the altitude of 100m, and was very low in the 200m. And also, importance value of Quercus variabilis and Steuortia koreana was high from 200m to 600m. The number of individuals of Pinus thunbergii and Pinus densiflora in the south slope were more increased than those of the north slope. The distributional class of D.B.H, showed an equal tendency in south and north slope, especially-Quercus variabilis and Quercus serrata had a good growth in north slope. The stand density in the upper lacer was high in south slope but mean acreage and mean distance of individual trees showed low. The species diversity indices were relatively lower in south slope than in north slope, and the maximum of species diversity showed slightly high in south slope. The evenness showed lower in south slope than in north slope relatively. By the cluster analysis used the similarity.

  • PDF

Domain Analysis of Research on Prediction and Analysis of Slope Failure by Co-Word Analysis (동시출현단어 분석을 활용한 비탈면 붕괴 예측 및 분석 연구에 관한 지적구조 분석)

  • Kim, Sun-Kyum;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.307-319
    • /
    • 2021
  • Although it is currently conducting slope management and research using digital technologies such as drones, big data, and artificial intelligence, it is still somewhat insufficient and is still vulnerable to slope failure. For this reason, it is inevitable to present the development direction for research on prediction and analysis of slope failure using the digital technologies to effectively deal with slope failure, which requires a preemptive understanding of prediction and analysis of slope failure. In this paper, we collected literature data based on the Web of Science for five years from January 1, 2016 to December 31, 2020 and analyzed by co-word analysis to identify the domain structure of research on prediction and analysis of slope failure. Detailed subject areas were identified through network analysis, and the domain relationships between keywords were visualized to derive global and regionally oriented keywords through relationship, centrality analysis. In addition, the clusters formed by performing cluster analysis were displayed on the multidimensional scailing map, and the domain structure according to the correlation between each keyword was presented. The results of this study reveal the domain structure of research on prediction and analysis of slope failure, and are expected to be usefully used to find future research directions.

Study on Slope Prevention Effect of Eco-environmental Riprap Structure (친환경 호안구조물의 사면보호 효과에 관한 연구)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.47-51
    • /
    • 2009
  • The slope failure in the country is caused by mainly rainfall and its type is reported shallow slope failures in general. To investigate the cause of slope failure, the unsaturated soil slope behavior in accordance with rainfall amount studies actively, but there are little studies related the slope erosion and scour by rainfall. The slope erosion and scour by rainfall cause environmental pollution and slope instability, however there are few methods to effectively control them. This research analyzed experimentally how infinite gradients are infiltrated according to the changes of amount of rainfall and the slope of gradients by manufacturing the model of gradient in order to investigate how rainfall infiltrates regarding homogeneous gradients and slope protection method. For this, this experiment measured and analyzed discharge, storage rate occurring in gradients by going on changing amount of rainfall, slope of gradients.

  • PDF