• 제목/요약/키워드: Slope Monitoring

검색결과 388건 처리시간 0.027초

위험도로사면의 실시간 무인감시시스템 개발 연구 (A Study on Development of Automated Monitoring System for Road Cut Slopes)

  • 김춘식;이광우;윤수호;조삼덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.607-614
    • /
    • 2000
  • A cost-effective automated slope monitoring system is developed to monitor hazardous cut slopes along highways. This automated slope monitoring system consists of data-collection and visual monitoring, data-transmitting, database and internet service, and alarm system. Wire-line extensometer, automatic raingauge, and CCD camera are selected as monitoring instruments in this system, after consideration of failure characteristics of roadside cut slopes in the country. This paper describes the important features of this newly developed automated slope monitoring system.

  • PDF

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.

Risk identification, assessment and monitoring design of high cutting loess slope in heavy haul railway

  • Zhang, Qian;Gao, Yang;Zhang, Hai-xia;Xu, Fei;Li, Feng
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.67-78
    • /
    • 2018
  • The stability of cutting slope influences the safety of railway operation, and how to identify the stability of the slope quickly and determine the rational monitoring plan is a pressing problem at present. In this study, the attribute recognition model of risk assessment for high cutting slope stability in the heavy haul railway is established based on attribute mathematics theory, followed by the consequent monitoring scheme design. Firstly, based on comprehensive analysis on the risk factors of heavy haul railway loess slope, collapsibility, tectonic feature, slope shape, rainfall, vegetation conditions, train speed are selected as the indexes of the risk assessment, and the grading criteria of each index is established. Meanwhile, the weights of the assessment indexes are determined by AHP judgment matrix. Secondly, The attribute measurement functions are given to compute attribute measurement of single index and synthetic attribute, and the attribute recognition model was used to assess the risk of a typical heavy haul railway loess slope, Finally, according to the risk assessment results, the monitoring content and method of this loess slope were determined to avoid geological disasters and ensure the security of the railway infrastructure. This attribute identification- risk assessment- monitoring design mode could provide an effective way for the risk assessment and control of heavy haul railway in the loess plateau.

Multi Antenna GPS를 이용한 취약사면 상시모니터링 시스템 (The Monitoring System Using Multi Antenna GPS for Weak Slope)

  • 노원석;김완종;장현익;김학수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.677-694
    • /
    • 2009
  • While the budget has been allocated more for repairs and reinforcements, casualties are gradually increased due to slope disaster. Slope disaster causes road damaged as well as casualties. It also causes significant social and economic loss. The measurement device, which is installed inside ground of slope like inclinometer, has the high loss rate when slope is being slided. The electric type and the vibrating wire type have low durability because of corrosion. To cover the demerit of the present slope monitoring, the measurement method using the Multi-Antenna GPS has been developed. The Multi-Antenna GPS has been installed in the local slope as the regular monitoring system for slope. Although the initial cost of the Multi-Antenna GPS for installation is high, the additional cost is low. So it is the suitable method for large slope. The regular monitoring system using the Multi-Antenna GPS is the suitable measurement method for watching slope collapse, which is occurred widely, because it is economical, has high durability, and collects data with high resolution.

  • PDF

Reliability Based Real-time Slope Stability Assessment

  • Lee, Seung-Rae;Choi, Jung-Chan;Kim, Yun-Ki
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.427-435
    • /
    • 2008
  • A reliability based slope stability assessment method is proposed and examined considering the variation of matric suction which is measured by a real time slope monitoring system. Mean value first order reliability method and advanced first order reliability method are used to calculate reliability indices of a slope. The applicability of methods is compared by applying them to the range of matric suctions measured by the real-time monitoring system. Sensitivity analysis is also performed to examine the contribution of random variables to the reliability index of slope. Finally, the proposed method is applied to a model slope. The results show that the reliability index of slope can be used for efficient slope management by quantifying the risk of slope in real time.

  • PDF

USN 기반의 사면붕괴 모니터링 시나리오 개발 (Development of a USN-Based Monitoring Scenario for Slope Failures)

  • 김균태
    • 한국건설관리학회논문집
    • /
    • 제11권6호
    • /
    • pp.122-130
    • /
    • 2010
  • 우리나라는 국토의 70%가 산지이고, 매년 7월~9월에 태풍과 집중호우가 있어, 사면붕괴가 매우 큰 피해를 끼치고 있다. 사면붕괴로 인한 재해를 예방하기 위하여 우리나라의 정부, 학계, 연구계, 산업계는 유선기반의 사면 모니터링 시스템을 개발하고 설치하는 등 피해 저감을 위한 다양한 노력을 경주하고 있다. 그러나 기존의 유선기반 모니터링 시스템은, 사면거동을 과학적으로 분석하기 시작하였다는 점에서 의의가 있으나, 낙뢰 등으로 인한 시스템 오류 가능성, 시스템 복구 및 관리의 어려움 등 유선시스템으로서의 한계가 노출되고 있다. 이러한 문제점을 해결하고자, 본 연구에서는 USN 기반의 사면붕괴 모니터링 시스템을 제안하였다. 이를 위하여, 우선 사면계측 및 USN 기술동향을 분석하고, 국내 사면붕괴 피해현황 및 사면붕괴 사례를 고찰하였다. 그리고 USN과 사면 모니터링 기술이 접목된 USN 기반 사면붕괴 모니터링의 시나리오를 개발하였다. 마지막으로 개발된 시나리오를 바탕으로 센서의 사양을 설정하고, 시스템 개발방안을 제시하였다. 본 연구의 결과들은 후속연구인 사면붕괴 모니터링 프로토타입 시스템 개발의 기반이 될 것으로 기대되며, 궁극적으로는 USN 기반의 사면붕괴 모니터링 시스템의 개발 및 현장 적용을 통하여 사면재해 예방 및 피해 최소화에 기여할 것으로 기대된다.

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • 제28권4호
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.

A Study on Real-Time Slope Monitoring System using 3-axis Acceleration

  • Yoo, So-Wol;Bae, Sang-Hyun
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.232-239
    • /
    • 2017
  • The researcher set up multiple sensor units on the road slope such as national highway and highway where there is a possibility of loss, and using the acceleration sensor built into the sensor unit the researcher will sense whether the inclination of the road slope occur in real time, and Based on the sensed data, the researcher tries to implement a system that detects collapse of road slope and dangerous situation. In the experiment of measuring the error between the actual measurement time and the judgment time of the monitoring system when judging the warning of the sensor and falling rock detection by using the acceleration sensor, the error between measurement time and the judgment time at the sensor warning was 0.34 seconds on average, and an error between measurement time and judgment time at falling rock detection was 0.21 seconds on average. The error is relatively small, the accuracy is high, and thus the change of the slope can be clearly judged.

풍화화강토 사면에서 강우로 인한 모관흡수력 변화에 대한 실험 연구 (In-situ Monitoring of Matric Suctions in a Weathered Granite Soil Slope)

  • 이인모;조우성;김영욱;성상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.509-516
    • /
    • 2002
  • Rainfall-induced landslides in a weathered granite soil slope have mostly relative shallow slip surfaces above the groundwater table The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure(or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

  • PDF

미소파괴음을 이용한 절토사면계측 (Rock Slope Monitoring using Acoustic Emission)

  • 장현익;김진광;김찬우;김경석;천대성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.743-748
    • /
    • 2010
  • The stability forecasting of rock slope is more difficult than soil slope because catching the sign of failure in monitoring is not easy and deformation of the rock is small in failure process. But in the rock slope, there is small deformation like crack propagation in rock itself and it accumulates gradually in failure process. If it is possible to detect the small change in the rock slope, we can know the failure time exactly. Because the individual signal is gathered in the acoustic emission monitoring, it is possible to monitoring the slope if many sound signal is accumulated. Detection test of acoustic emission was performed. Uniaxial, two types of bending test, and two plane shear test were done with various cement paste sample. Wave propagation velocity of uniaxial test sample was increased with curing time. Wave Analysis give us the result that there is a AE sign signal before the failure, the AE count is suddenly increased. And frequency level 125kHz before failure is changed to level 200-250kHz after failure. In two plane shear test we can catch the AE signal and can know the failure type from wave shape. Monitoring test site is tunnel slope in Hongcheon but special signal is not collected.

  • PDF