• Title/Summary/Keyword: Slope Factor

Search Result 1,110, Processing Time 0.029 seconds

Effect of Extreme Rainfall on Cut Slope Stability: Case Study in Yen Bai City, Viet Nam

  • Tran, The Viet;Trinh, Minh Thu;Lee, Giha;Oh, Sewook;Nguyen, Thi Hai Van
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.23-32
    • /
    • 2015
  • This paper addresses the effects of extreme rainfall on the stability of cut slopes in Yen Bai city, Northern Viet Nam. In this area, natural slopes are excavated to create places for infrastructures and buildings. Cut slopes are usually made without proper site investigations; the design is mostly based on experience. In recent years, many slope failures have occurred along these cuts especially in rainy seasons, resulting in properties damaged and loss of lives. To explain the reason that slope failure often happens during rainy seasons, this research analyzed the influence of extreme rainfalls, initial ground conditions, and soil permeability on the changes of pore water pressure within the typical slope, thereafter determining the impact of these changes on the slope stability factor of safety. The extreme rainfalls were selected based on all of the rainfalls triggering landslide events that have occurred over the period from 1960 to 2009. The factor of safety (FS) was calculated using Bishop's simplified method. The results show that when the maximum infiltration capacity of the slope top soil is less than the rainfall intensity, slope failures may occur 14 hours after the rain starts. And when this happens, the rainfall duration is the deciding factor that affects the slope FS values. In short, cut slopes in Yen Bai may be stable in normal conditions after the excavation, but under the influence of tropical rain storms, their stability is always questionable.

Slope Failure Surface Using Finite Element Method

  • Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.27-40
    • /
    • 1999
  • In limit equilibrium methods(LEM), all methods employ the same definition of the safety factor as a ratio of the shear strength of the soil to the shear stress required for equilibrium, employing certain assumptions with regard to equilibrium. In addition, in the conventional finite element method of analysis, the minimum safety factor is obtained assuming certain slip surfaces after the state of stress are found. Although the stress states are obtained from the finite element method(FEM), the slope stability analysis follows the conventional method that assumes a potential slip surface. In this study, a slope stability analysis based on FEM is developed to locate the slip surface by tracking the weakest points in the slope based on the local safety factor considering the magnitude and direction of the shear stresses. It has also been applied to be compared with the slip surfaces predicted by LEM. A computer program has been developed to draw contour lines of the local safety factors automatically. This method is illustrated through a simple hypothetical slope, a natural soil slope, and a dam slope. The developed method matches very well with the conventional LEM methods, with slightly lower global safety factors.

  • PDF

FPF(Fibrillated Polypropylene Fiber) Reinforcement Method for Slope Repair (사면보수보강을 위한 FPF 보강공법개발)

  • 김낙경;박동원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.257-264
    • /
    • 2001
  • This study presents the slope stability analysis results for the model slope test. The model slope was made of the soil reinforced by FPF(Fibrillated Polyprophylene Fiber). The shear strength properties of the soil reinforced by FPF fibers were evaluated through the direct shear tests. The model slope 1:1 and 1:1.5 were made and the load tests were performed. Back analysis using limit equilibrium method was carried out to evaluate the shear strength increase on the FPF reinforced slope. The factor of safety of the FPF reinforce slope increased about 23% over unreinforced slope.

  • PDF

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Consideration of Minimum Safety Factors for Cut-slope Infiltration Analysis (깎기비탈면 침투해석을 위한 최소 안전율 적용성 고찰)

  • Lee, Jeong-Yeob;Rhee, Jong-Hyun;Oak, Young-Suk;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.375-385
    • /
    • 2012
  • Infiltration characteristics of cut-slope safety factors are considered for precipitation duration and intensity. Infiltration characteristics (infiltration module) and safety factor (slope module) changes of a cut-slope are analyzed under various conditions of precipitation intensity and duration, using the Soilworks program. The results indicate that the addition safety factors of the slope decreased immediately after the end of precipitation due to an increase in pore water pressure. The minimum safety factor for cut-slope infiltration analysis should be considered because of the because of the decrement of safety factors after precipitation that exceeds the decrement of safety factor during the duration of precipitation.

Analysis of Discontinuity Distribution Property to Predict Rock Slope Failure (암반 사면의 파괴 예측을 위한 불연속면 분포 특성 분석)

  • 윤운상;김정환;배기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.147-152
    • /
    • 1999
  • Distribution of fracture system is an important factor to analyse instability of jointed rock slope. In the most case of rock slopes, joint distribution properties are related to potential, shape, size and locality of slope failure. The purpose of this paper is to present an application of fracture characterization related to rock slope failure. Fracture data used in this study are collected by scanline survey. Two aspects of fracture characterization for rock slope are handled in this study First, In order to determine the potential and shape of slope failure, trace length of joints is considered as the weighting factor about collected orientation data. Second, Relationship between trace length and spacing is analysed to estimate failure location and size. The distribution of fracture system is directly influenced on wedge failure. It is effective to analyse the orientation of fractures by using weighting factors associated with the trace length of fractures rather than to analyse only that of fractures. It gives a conclusion that the wedge failure occurred along the peak of fracture density(or intensity) cycles.

  • PDF

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

A Study on the Change of Slope Safety Factor according to the Anchor Construction Interval (앵커 시공 간격에 따른 비탈면 안전율 변화 연구)

  • Kim, Jinhwan;Lee, Jonghyun;Kwon, Oil;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.515-523
    • /
    • 2020
  • If the safety factor does not secure the safety factor suggested in the design standard at the slope design stage, the safety factor is secured by installing an anchor. Stability analysis is used to verify the effect of reinforcing the slope of the anchor, but in this process, most of the anchor construction intervals are assumed to be equal and analyzed. For economical and effective slope reinforcement, stability analysis is required by adjusting the anchor construction interval. In this study, the effect of the anchor construction interval on the change of the safety factor of the slope was identified. Stability analysis was performed by setting a virtual slope with two berms and different anchor construction intervals. As a result of the analysis, the stability of the slope is secured when the anchor spacing of the lower surface is narrowed and the anchor gaps of the upper and middle surfaces are wider than when anchors are installed at the same intervals on the upper, middle, and lower surfaces of the slope. The result was a 15% reduction in the amount of anchors. This means that, rather than reinforcing anchors at the same intervals, it is economical and effective to have an economical and effective reinforcement effect to vary the anchor construction intervals according to the slope characteristics.

Case Study of Slope Investigation on the Cretaceous Sedimentary Rocks Using the Geological Cross-Sections

  • Ihm, Myeong-Hyeok;Kim, Woo-Seok;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.463-478
    • /
    • 2021
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The orientation of the slope-face represents a variety of changing characteristics. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the toppling failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, analysis and review of the stereonet projections and the critical equilibrium analysis, all four representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs = 1.5 and Fs = 1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability. In addition, it will be possible to use it as basic data for performance evaluation for slope maintenance.