• Title/Summary/Keyword: Slip surface

Search Result 487, Processing Time 0.028 seconds

A Study on the Slip Behavior of Coated High Tension Bolted Joints (도장처리한 고장력볼트 연결부의 미끄러짐 특성에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Kim, Ki Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.691-697
    • /
    • 2008
  • Coating the high tension bolted frictional joint has been generally allowed for anti-corrosion purpose. However in case of painting on paying surface of the high tension bolt, the influence on a slip strength of the joint depending on precision of painting has remained controversial. The study thus was intended to identify the slip behavior on high tension bolted frictional joint when applying ceramic painting, which has been currently developed. A slip test was conducted on a high tension bolted frictional joint specimen on which ceramic painting has been applied and a slip load and slip coefficient were measured. Based on result, the safety and usability of ceramic painting-applied high tension bolted frictional joint was evaluated. As a result, a difference to some extent by specimen in terms of load-displacement when a slip occurred was observed but an average slip coefficient appeared to have exceeded 0.4, which is the design frictional coefficient set forth in the specification. To secure the safety and usability of ceramic painting-applied high tension bolted frictional joint, it's necessary to establish the standard for painting as well as to revise the relevant specification.

Crack Analysis under Fretting Condition by Rounded Punch (라운딩 펀치에 의한 프레팅 상태에서의 균열 해석)

  • Kim, Hyeong-Gyu;Jeong, Yeon-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1565-1574
    • /
    • 2000
  • Surface edge crack subjected to contact stresses is analysed. A punch with corner radii is considered to press the semi-infinite plane. Partial slip problem is solved when a shear force is applied to the punch. Dislocation density function method is used to solve the present mixed mode crack problem. The crack length of positive K1 is examined, which is affected by the ratio of the flat portion to the total width of the punch. Surface traction during one cycle of the shear force is evaluated to simulate the fretting condition. The compliance change of the contact surface is also investigated during the shear cycle. It is found that the crack grows during only a part of the cycle, which may be termed as effective period of crack growing. A design method for restraining the fretting failure is discussed, from which recommendable geometry of the punch is suggested.

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

3D numerical investigation of segmental tunnels performance crossing a dip-slip fault

  • Zaheri, Milad;Ranjbarnia, Masoud;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.351-364
    • /
    • 2020
  • This paper numerically investigates the effects of a dip-slip fault (a normal or a reverse fault) movement on a segmental tunnel which transversely crosses either of this kind of faults. After calibration of the numerical model with results from literature of centrifuge physical tests, a parametric study is conducted to evaluate the effects of various parameters such as the granular soil properties, the fault dip angle, the segments thickness, and their connections stiffnesses on the tunnel performance. The results are presented and discussed in terms of the ground surface and tunnel displacements along the longitudinal axis for each case of faulting. The gradient of displacements and deformations of the tunnel cross section are also analyzed. It is shown that when the fault dip angle becomes greater, the tunnel and ground surface displacements are smaller, in the case of reverse faulting. For this type of fault offset, increasing the tunnel buried depth causes tunnel displacements as well as ground surface settlements to enhance which should be considered in the design.

A study of the variations by motion of the Lower body Using 3D Body Surface Scan Data of a man in his early twenties (3차원 스캐너를 이용한 20대 남성의 하반신 신축량 분석)

  • Sohn, Boo-Hyun;Hong, Kyung-Hi
    • Korean Journal of Human Ecology
    • /
    • v.18 no.3
    • /
    • pp.729-740
    • /
    • 2009
  • This study is to research on the rate of expansion or contraction according to movement of the lower body of the man their twenties using Rapid Form software. And aim of this study is to get information of ease allowance in developing slacks pattern using 3D body surface scan data through comparison with existing slacks patterns. Considering on the contraction and expansion according to movement, it need to set the more ease allowance in hip circumference than waist circumference, and the more ease allowance in back hip width than front hip width in slacks. In crotch length, the length of front crotch is revealed contraction but the length of back crotch is revealed expansion. It is desirable lowering front waist line and raising back waist line to possess ease allowance in back crotch area. The length of side seam is revealed a little expansion but the length of inseam is showed a great expansion. To develop slacks pattern of scientific approach using 3D body surface scan data, it need to analysis the rate of expansion and contraction of the lower body based on the movement, shear deformation, slip in fabrics and skin, or in fabrics and fabrics, and slip down from waist line.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryu, Seong-Guk;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

Kinematic Mechanism of Gait on Different Road Conditions in Older Women (보행 지면 상태에 따른 노인의 운동학적 보행 메카니즘)

  • Hah, Chong Ku;Ki, Jae Sug;Jang, Young Kwan;Lee, Eun Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.163-171
    • /
    • 2015
  • The aim of this study was to investigate kinematic mechanism of gait different road conditions(dry vs. oil) in order women. For this study, twenty older women and ten young women participated in this research. twelve infrared cameras were used to collect data. It appeared that the gait strategies of older women were slower velocity and higher CoM than young women. Depending on road conditions, gait velocities of dominant muscle older women on dry surface were faster than dominant sense older women, but those of them were inverse on oil surface. The slip displacement of dominant muscle older women was less than young women, but the slip displacement of dominant sense older women was greater than young women. In case of blind during stance phase on oil surface, the rotational motion of the ankle and knee joints were increased. In conclusion, older women were subjected to self-organization theory and phase shift in dynamic theory.

Generalized Solution Procedure for Slope Stability Analysis Using Genetic Algorithm (유전자 알고리즘을 이용한 사면안정해석의 일반화 해법)

  • Shin, Eun-Chul;Patra, Chittaranjan R.;Pradhan, R.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.5-11
    • /
    • 2008
  • This paper pertains to the incorporation of a genetic algorithm methodology for determining the critical slip surface and the corresponding factor of safety of soil slopes using inclined slice method. The analysis is formulated as a constrained optimization problem to solve the nonlinear equilibrium equations and finding the factor of safety and the critical slip surface. The sensitivity of GA optimization method is presented in terms of development of failure surface. Example problem is presented to demonstrate the efficiencies of the genetic algorithm approach. The results obtained by this method are compared with other traditional optimization technique.

The Effects of Surface Shear Viscosity and Surface Tension on a Columnar Vortex Interacting with a Free Surface (자유표면과 반응하는 수직와류에 대한 표면점성계수와 표면장력의 영향)

  • Kim Kyung-Hoon;Sohn Kwon;Kim Seok-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • Vertices terminating at free surface have been investigated extensively. Most of investigations, however, are focused on surface parallel vortices and little has been known about surface normal vortex or columnar vortex. Visualized experimental results utilizing LIF technique are discussed fur the purpose of characterization of columnar vortex interacting with a clean and a contaminated free surfaces and a solid body interface in the present investigation. The results reveal that surface tension changes due to surface contamination although bulk viscosity remains constant and eventually the behavior of a columnar vortex interacting with a contaminated free surface and a solid body interface are totally different from the clean free surface case.

  • PDF

The Effect of Floor Slipperiness on Gait Characteristic (바닥의 미끄럼 저항이 보행 특성에 미치는 영향)

  • Kim, Tack-Hoon;Han, Seok-Kyu;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.133-141
    • /
    • 2015
  • The floor slipperiness is an essential property for the pedestrian safety. This study was conducted to develop the slip test apparatus to be well accorded with actual characteristics of human gait; and the correlation between RCOF (Required coefficient of friction), Rz (Surface roughness), and 3 coefficients of slip resistance (C.S.R (Coefficient of slip resistance), BPN (British pendulum number), and SCOF (Static coefficient of friction)) were analyzed. Result of the analysis revealed that the cadence, stride length, and step length were proportional to the walking speed, and the significant correlation between walking speed and RCOF was found. However, the correlation between RCOF and the other respective coefficients of slip resistance was almost unidentified thus it would be difficult to identify the actual property of floor slipperiness with the RCOF alone.