• 제목/요약/키워드: Sliding mode method

검색결과 589건 처리시간 0.025초

출력 궤환 슬라이딩 모드 제어기 설계를 위한 선형행렬부등식 접근법 (An LMI Approach to Output Feedback Sliding Mode Controller Design)

  • 최한호
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1298-1301
    • /
    • 2007
  • The problem of designing dynamic output feedback sliding mode controllers for uncertain multivariable linear systems is considered. Using linear matrix inequalities(LMIs), a feasibility condition for the design problem is derived. Explicit fomulas of the gain matrices of a full order output feedback sliding mode controller in terms of the solution matrices of the LMI condition is given. A simple LMI-based algorithm for designing output feedback sliding mode controllers is also given. Finally, numerical design examples are given to show the effectiveness of the proposed method.

슬라이딩 모드 제어 이론을 적용한 PI 제어기에 의한 직류 서보 모타의 위치 제어에 관한 연구 (Study on Design PI Controller Adopted Sliding Mode Control for DC Servo Motor Position Control)

  • 박경배;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.29-32
    • /
    • 1989
  • This paper proposes new position control method for DC servo motor by PI controller adopting sliding mode control. By adding sliding mode controller to conventional PI controller good robustness is obtained with good transient response and no steady state error which are merits in PI controller. In order to use microprocessor for digital control the principles of sliding mode control conventionally explained in continous-time system are extended to discrete-time system.

  • PDF

Stability Analysis of Visual Servoing with Sliding-mode Estimation and Neural Compensation

  • Yu Wen
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.545-558
    • /
    • 2006
  • In this paper, PD-like visual servoing is modified in two ways: a sliding-mode observer is applied to estimate the joint velocities, and a RBF neural network is used to compensate the unknown gravity and friction. Based on Lyapunov method and input--to-state stability theory, we prove that PD-like visual servoing with the sliding mode observer and the neuro compensator is robust stable when the gain of the PD controller is bigger than the upper bounds of the uncertainties. Several simulations are presented to support the theory results.

축차관측기를 사용한 슬라이딩 모드 제어 (Reduced Order Observer Based Sliding Mode Control)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1057-1060
    • /
    • 2006
  • This paper presents an LMI-based method to design a reduced order observer based sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a reduced order observer and a sliding mode control law. And we give explicit formulas of the gain matrices. Finally, we give a numerical design example, together with a design algorithm.

전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어 (Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

로봇 매니퓰레이터를 위한 삼분 비선형 슬라이딩 모드를 가지는 가변구조 제어 (VSC with three-segment nonlinear sliding mode for robot manipulator)

  • 최성훈;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.69-72
    • /
    • 1996
  • In this paper robust tracking control scheme using the new three-segment nonlinear sliding mode technique for nonlinear rigid robotic manipulator is developed. Sliding mode consists of three segments, the promotional acceleration segment, the constant velocity segment and the deceleration segment using terminal sliding mode. Strong robustness and fast error convergence can be obtained for rigid robotic manipulators with large uncertain dynamics by using the new three-segment nonlinear sliding mode technique together with a few useful structural properties of rigid robotic manipulator. The efficiency of the proposed method for the tracking has been demonstrated by simulations for two-link robot manipulator.

  • PDF

PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어 (Control of Multi-Joint Manipulator Using PD-Sliding Mode)

  • 손현석;이원기;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어 (ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre)

  • 김정식
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.

자기력 부상 시스템인 평형빔의 Integral Sliding Mode 제어기 : 이론과 실험적 평가 (Integral Sliding Mode Controller for Magnetically Suspended Balance Beam: Theory and Experimental Evaluation)

  • 이준호;이정석;박영수;이재훈;이기서
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권9호
    • /
    • pp.526-537
    • /
    • 2000
  • This paper deals with a sliding mode controller with integral compensation in a magnetic suspension system The control scheme comprises an integral controller which is designed for achieving zero steady-steate error under step disturbance input and a sliding mode controller which is designed for enhancing robustness under plant parametric variations. A procedure is developed for determining the coefficients of the switching plane and integral control gain such that the overall closed-loop system has stable eigenvalues. A proper continuous design signal is introduced to overcome the chattering problem. The performance of a magnetically suspended balance beam using the proposed integral sliding mode controller is illustrated. Simulation and experimental results also show that the proposed method is effective under the external step disturbance and input channel parametric variations.

  • PDF

새로운 적응 슬라이딩 모드제어에 관한 연구 (A Study on the new adaptive sliding mode control)

  • 박승규;김민찬;정은태;곽군평
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.325-325
    • /
    • 2000
  • This paper proposes a modified adaptive sliding mode control which improve the performance by making the system follow the nominal trajectories controlled by nominal controller. This method is used for the system with unknown parameter uncertainty and bounded uncertainties.

  • PDF