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Stability Analysis of Visual Servoing with Sliding-mode Estimation
and Neural Compensation

Wen Yu

Abstract: In this paper, PD-like visual servoing is modified in two ways: a sliding-mode
observer is applied to estimate the joint velocities, and a RBF neural network is used to
compensate the unknown gravity and friction. Based on Lyapunov method and input--to-state
stability theory, we prove that PD-like visual servoing with the sliding mode observer and the
neuro compensator is robust stable when the gain of the PD controller is bigger than the upper
bounds of the uncertainties. Several simulations are presented to support the theory results.

Keywords: Neural compensation, sliding-mode, stability, visual servoing.

1. INTRODUCTION

Visual servoing is a flexible and robust control
technique of robots using vision in feedback control
loops. Visual servoing can be classified into fixed-
camera and camera-in-hand configurations. For fixed-
camera visual servoing, cameras are in world
coordinate frame, they capture images of robots and
environment [1]. For the camera-in-hand visual
servoing, cameras are mounted on the robot, which
can only obtain visual information of the environment
[2]. In this paper, we will use the fixed-camera
approach. An objective of visual servoing is to move
the end effector of robot to desired positions. In the
last decade, many visual servoing strategies have been
proposed in the literature, see [3] for an overview.
Based on the energy-shaping Jacobian transpose, a
rigorous analysis of stability for visual-based feedback
control is given in [4]. The effects of optical
imprecision of cameras on the end effector is analyzed
in [1]. [5] uses self-tuning regulator to overcome the
off-line calibration problem. [6] and [7] use neural
networks to determine the joint angle's velocities for
visual servoing. In [8] neural networks are used to
compensate the friction in visual servoing. Many
visual servoings use PD-like controller as

=K, %~ |- Kg[a-d"), (M
where x, and x, are the positions of end-effector
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and target in the images, ¢ and §* are real and

desired joint velocities, K,and K} are positive definite,
symmetric and constant matrices, which correspond to
proportional and derivative coefficients. Various
modifications on PD-like visual servoing have been
published, see [1,9,10]. But there are two main
weaknesses: (a) The controller requires measurements
of joint positions and joint velocities; (b) Due to the
existence of friction and gravity, the PD-like visual
servoing cannot guarantee zero error of the steady
state. The majority velocity sensors are tachometer
generators, they provide analog signals that are
usually heavily corrupted with noise [11]. A possible
solution for steady state error is to add an integrator,
named PID visual servoing, but the poles in image
axis can cause the closed-loop system unstable [12].

It is very interesting to realize PD-like visual
servoing with only joint positions. One possible
method is to use velocity observer [13]. Observer-
based visual servoing was first presented in [10]. Two
kinds of observers can be used, model-based and
model-free observers. The model-based observers use
complete or partial model information of robots. For
example, if the object motion model is assumed to be
linear, a Luenberger observer can be applied [14]. A
linear observer was presented in [13] by neglecting
the nonlinear dynamic of the robot. The model-free
observer does not require exact knowledge of robots.
The most popular model-free observer is high-gain
observer [15]. Neural observer can be regarded as
another model-free observer, where robots are
estimated by static neural networks [11].

Visual servoing needs transformation from task
space into joint space. It requires exact knowledge of
the Jacobian matrix. Several efforts have been made
to stabilize robots with respect to uncertain Jacobian,
where the dimension and joint angles’ measurements
are not exact [16]. Friction and gravity of robots may
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influence steady and dynamics properties of the
closed-loop system. Global asymptotic stability PD
control is realized by pulsing gravity compensation in
[17]. For robust visual servoing, neural networks can
be applied to approximate parts of robot dynamics, for
example friction and gravity [8], or the whole
dynamics of robots [18]. PD-like visual servoing with
sliding-mode observer and neural compensator is
presented in [19], where stability analysis is not
established. To the best of our knowledge, stability
analysis of visual servoing with sliding mode observer
and neuro compensator has not yet been established in
the literatures.

In this paper, we propose a novel PD-like visual
servoing. First, a sliding mode observer is used to
estimate joint velocities from joint position
measurement, observer-base PD controller is proved
to be stable. Then, a RBF neural network is used to
estimated friction, gravity and uncertainty of the
Jacobian matrix, PD controller with neural
compensator is robust stable. The learning algorithm
of the neural compensator is obtained from stability
analysis of regulation error. By input-to-state stability
(ISS) technique and Lyapunov method, we show that
the closed-loop system with sliding-mode observer
and neuro compensator is robust stable with respect to
bounded uncertainties. Some numerical simulations
are carried out to validate the theoretical results
proposed in this paper.

2. PRELIMINARIES

The main concern of this section is to understand
some concepts of robot dynamic, visual servoing,
RBF neural networks and input-to-state stability.

2.1. n-links robot dynamic
The dynamics of a serial n— link rigid robot
manipulator can be written as [15]

M(q) c'j+C(q, q') q'+G(q)+F(q)=r, 2)

where geR" denotes the joints positions, ¢ e R"
denotes the joints velocity, M(q)e R™" is the inertia
matrix, C(g, ¢) € R™" is the centripetal and Coriolis
matrix, G(g) € R” is the gravity vector, F(§)e R" is
a positive definite diagonal matrix of frictional terms,

and 7eR" isthe input control vector.

This robot model (2) has following structural

properties which will be used in the design of velocity

observer and nonlinearity compensation [15].
Property 1: The inertia matrix is symmetric and

positive definite, i.e.,

m “xnz <xT M(q)x< my l.x"2 ;VxeR”,

where my, m, are known positive scalar constants,

xeR" is a vector, |||| denotes the euclidean vector

norm.

Property 2: The centripetal and Coriolis matrix is
skew-symmetric, i.e., satisfles the following
relationship:

x' [ M(g)-2C(q, §)] x=0.

2.2. 2-D visual servoing of robot
The relation between the end-effector position

[x )" eR? and the joint positions g(f)eR" is
[x yI" =K(9) [x" ¥'1" =K(¢"), where [x" »'] and
g* are desired end-effector position and joint

position, K : R" — R?. The Jacobian matrix J (e

R of the robot is defined as
oK « OK(q"
70 =0, g =T G)

In order to simplify the proof, in this paper we only
discuss regulation problem, i.e., the derivative of the

. o s . .k
desired position is zero, ¢ =0.

We consider a camera that is vertical to the working
plane of the robot manipulator, and the robot’s
working plane is 2-D, which is shown in Fig. 1.
The image center is in origin of the screen coordinate
frame, the camera is rotated about its optical axis by
clockwise & radians, so the rotation matrix is

R(@)— cosd -—sin@
| sin@ cos@ |

The perspective gain is [14], A =%, A (meter)
7

camera
Screen ‘Workspace

» optical axis

image

Lens model

Fig. 1. 2D visual system.



Stability Analysis of Visual Servoing with Sliding-mode Estimation and Neural Compensation 547

is focal length, z (meter) is distance between camera
and robot frame, z > A. The scale factor of length
units is « (pixels/m). The position of optical axis is

[0

rls 0,2]T, a point P in robot coordinate frame is

[ D prz]T, this point in screen coordinate frame is
T . o
[ Pal ps2] , the image center (not in origin of screen

. ) T
coordinate frame) is [cx, ch , SO

c 0)
I:pslil_l: x}:ahR(H) [I:prl}_[ rl}], (4)
Ps2 cy y2%) Or2
where «a is the scale factor of length units. We want
to force the end-effector [x, y]T to the target
T

[x*, y*] . It is assumed that there exists at least one
g eR”
manipulator) such that the robot end-effector is on the
target. The image position error X, is defined as

xs = - 3 (5)
y: Vs

where (x;‘

joint  position (n-link rigid robot

, y;) and (x;, y,) are the positions of

target and end-effector in the images. (5) can be
written as

%, = ahR(H)Hx:} _BH - ahR(6) K(q")-K (a)

Y
(6)
The velocity property is
d ~ * % 3 .
& =ahR| J(q" - I (@) | )

A well known PD-like visual servoing control is (for
regulation case ¢* =0)

r=J"K % - K44, (8)

where K, and K; are positive definite, symmetric

and constant matrices.

2.3. RBF neural networks

Radial Basis Function (RBF) neural networks have
recently gained considerable attention. The advan-
tages of the RBF approach, such as the linearity in the
parameters and the availability of the fast and efficient
training methods, have been noted in several
publications [20,21]. RBF neural networks has one

hidden layer and a linear output layer. The output of
neural networks may be presented as

N
i=1

where N is hidden nodes number, w; ; is the

iJ
weight connecting hidden layer and output layer. xis
input vector xe€R™ (m is input node number),

V e RV*™is the weight matrix in hidden layer, b is
the threshold. The significance of the threshold is that
the output values have nonzero mean. It can be
combined with the first term as w, ; =b, oy(Vx) =1,

N

S0 y; = 2 w;, j0;(Vx). 0;(Vx) is radial basis function
=0

which we select as Gaussian function o ;(Vx)=

=<

, where c¢; and p]2~ represent the

exp J

2
2p;
center and spread of the basis function.

2.4. Input-to-state stability (ISS)
Consider a class of nonlinear systems described by

X = f (x5 ), (10)

where x, € R” is the state, #, e R™ is the input

vector, y, € R™ is the output vector. f :R"xR"™

— R" is locally Lipschitz. Let us now recall some
ISS properties [22].

Definition 1: A system (10) is said to be globally
input-to-state stable if there exists a K -function
y(s) (continuous and strictly increasing ¥(0)=0)

and KL -function f(s, £) (K -function and for
each fixed 5520, lim ,li’(so, t) =0), such that, for
f—o

each u, € L, (“u(t)”o0 < oo) and each initial state

¥

Definition 2: A smooth function ¥ : R” - R>0
is called a ISS-Lyapunov function for system (plant) if
(a) there exists a K, -function () and a,(-) (K-

function and for each fixed 7,20, lim B(s, 1))
§—>»0

2 R”, it holds that "x(t, X0, u,)Hsﬂ(HxO

+7(”u,”w) for each r>0.

= o0 ) such that
o () <V (s)<ay(s), VseR".

(b) There exist a K, -function ¢;() and a K -
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function a4(-) such that
7 <P+ s )

For a nonlinear system, the followings are equivalent
[23]: 1) It is input-to-state stable (ISS). 2) It is
robustly stable. 3) It admit a smooth ISS-Lyapunov
function. If a system is input-to-state stability, the
behavior of the system should remain bounded when
its inputs are bounded.

3. STABILITY ANALYSIS OF VISUAL
SERVOING WITH JOINT VELOCITY
OBSERVER

It is well known that one can determine the velocity
from the position measurements by differential
approximation of the derivative of position

).Cl =Xy,

P (11)
Xy~ 1,t+; l,t’ 5>0,

where x; is position, x, is velocity, Jis a small

positive constant, it represents time interval. But the
result is not smooth when & is very small. The most
widely used velocity estimator is the high gain
observer [24]. But this observer is very sensitive for
the output noise. In this paper, we use another model-
free observer which can overcome the above
shortcomings.
The robot dynamic (2) can be expressed as

% =f(x, ©), ¥ =Dx, (12)

where x, =[?}ER2”, X=q, % =4,
q

q

T ”:{M—wq) [r-Cla 4) a-6la)-F(a)]]

(13)

If only the joint position is measurable, D=[I , O].
(12) can be rewritten as the normal form

X = Ax + fi(x, ),

(14)
Yy =Dx,,

where f(x;, u,)=f(x,, w;)—Ax,, A is selected
such that the pair (A4, D) is observable.
Let us construct the sliding mode observer as
%;IZAE, +8(%,, e)-Ke, 15)
y: = Dx;,

A

q
where X, ={ d A}, e, is output error defined as

a4
g =y -y =DA =D(X, —x), where A, is observer

error, S(X;, ¢) isselected

- P”'D' DA AT
S(x,, et):_p"DTHt:_pP 1DTSlg(et),(16)
t
€y O
where  sig(e,)=1lel “ , P is a positive
0 =0

definite matrix, o is a positive constant, they will be

determined after. Clearly the sliding mode observer
(so) is not depended on the nonlinear plant (12), only
the output y is needed. This kind of observer is called

model-free observer. Although only § is needed, we

have to use full states to construct the observer,
because model-free observers, such as sliding mode
and high gain observers, cannot work with partial
states. It is different with model-based observer,
where reduced-order observer may be applied. The
derivative of observer error is

%Zt =AA, +S(X,, ¢)—KDA, - fi(x, u,)
=(4-KD) A +5(%, ¢)= fitx, u) (A7)
=A()A1+S(ft’ e[)_fi(xt’ u[)a

where Ay =A-KD. Because (A4, D) is observable

there exists K such that A4 is stable. So the following
Lyapunov equation has a positive solution P

A4 P+PAy=—0, 0=0" >0 (18)

for a positive define matrix Q. By (13) we know
f(x,, u,) is bounded, so following assumption is
satisfied.
Assumption 1: f(x;, u,)— Ax, =—P71DTh(x,, u,)
where /(x,, u,) isbounded as
”h(xt, uJ”SZ,

here h is a known positive constant.

Theorem 1: If the observer gain satisfies p>Z,

the error between the sliding mode observer (12) and
the robot (15) is asymptotically stable

lim A, =0. (19)

t—>0

Proof: Let consider the following Lyapunov
function candidate: ¥, = AT PA,. Its derivative is
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Vv, =AT (AOTP+PAO)Z, +2AT P[S(%,¢)~ fi(x,u)]. where §=%,, K,=k,I. Following theorem gives

Using Assumption 1

S, u)= —P“lDTh(x,, u,),

h(x;, “z)||<p-

Because A! D" h(x,, u,)S||DZt" ||h(xt, ut)", if we

select S(%,, ¢) as(16), we have

Al'DT DA,
oA

=~A QA +2A] D h(x;, u,)-2|DA,| p

V,=-ATQA, +2AT DT h(x,, u,)-2

<-A7OA, +2|DA, | (JAtx,, u)|-p)<0.

Since V; <0, A, € L. Fromthe error equation (17) we
also conclude that <A, € L. Since ¥, <—A]QA,
and ¥, is bounded process, A, is quadratically
integrable and bounded A;eL,. Using Barbalat’s

Lemma we obtain that the observer error A, is
asymptotically stable, so lim A, =0.
1—>®0
The design procedure of sliding-mode observer is
to find suitable matrices 4, K, O, and P such that
Assumption 1 is satisfied. First we should select a
stable matrix A such that (4, C) is observable, now

we can find K such that 4;=A4-KC is stable. A

stable A, can assure (18) has positive solution P,

so Al can be guaranteed.

This sliding mode observer is asymptotically stable,
but a robot motion lasts only a finite time, so the
observer error cannot be zero in a finite time, we
define the estimation error for ¢ as

ic} =4+¢
a1
If we choose a large p, the convergence speed is

very fast such that the observer error is small enough.
In the simulation section we will show this
observation.

Since ¢ is bounded, we can assume ¢ is bounded
for a finite time ¢, which satisfies following
assumption.

Assumption 2: gTKgAngg <7,
where A, is a positive matrix. When the joint
velocity ¢ is estimated by the sliding-mode observer

(15), the observer-based PD-like visual servoing is

r=J K, % —K, %4, (20)

a stability property of the observer-based visual
servoing.

Theorem 2: If the PD-like visual servoing control
(20) is applied to the robot system (2) such that

K, > A (21)
and all other uncertainties such as friction, gravity,

image error and the Jacobian matrix error does not
exist, the regulation errors X, and ¢ are bounded.

The average regulation error § converges to
timsup=- [[ Jafp, dr<7,. (22)
Tox T -0

where Q) =K, —A;l.
Proof: Define Lyapunov function

_1l.r . 1 .7(.-1 -
V=od Myt 5 (R Kp) %, (23)

Since K, =k,I, R_le is a symmetric matrix.
The time derivative of (23) is

V=4 Mi+Lq" Mg+ L5 (RVK )5,
:%QT{2T—2C((], q) q—z[G(q)+F(q)] +Mq}
+$x§(R_1Kp) i,.

Using Property 2, ¢' (M -2C) ¢=0.

For regulation case ¢* =0, from (7), x, =-ahRJq,
$0

V:qT[r—(G+F)—JTKp)zS]

From (20), 7= JTKpis -K;(q+e).

According to the assumptions of this Theorem,
G+F=0

V=-d"K;4+§ Ke. (24)
In view of the matrix inequality,
T
xT Y+(XTY) <XTA'x +¥TAY, 25)

which is valid for any X, ¥ eR™* and for any

positive defined matrix 0<A=AT e R®" [21],
qT K, & in (24) can be concluded as
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G Kye<d"A]'g+eTKTA K e
(24) becomes
Vi<-d" 01§ +7,, (26)

where O =K, —A;l, from (21) we known Q; > 0.
(24) can be represented as

V< =Amin (Q1) Nl + " vz <= ldll+ Ay el

b

where @ = Anin () dl. Ao = Amax (A1)
A =K§A5Kd. So 4l and ﬂ”gn are K, functions,
V' is an ISS-Lyapunov function. Using Theorem 1 and
the bound of &, we conclude that 7 is bounded.
So the regulation error %, and |g| are stable.

Integrating (dvl) from 0 upto T yields

T.r.. _
VT—VOS—IOQ Qg +1,T.
So
.7, . _ _
[ .47 Qg <Vo ~Vp + 7,7 <Vo +7,T

dividing each term by 7, and taking the limit for
T — o, of these integrals’ supreme, we obtain

. 1 T .12 . VO — =
imsup . [l ar <timsup| 2217, |7

where ||q||2Q1 = qT Qlé, (22) is established.

Remark 1: If we know the gravity G and the
friction F, the ideal PD-like visual servoing (8) can be
modified as

r=JTK % - K G+G(q)+F(q).
The observer-based visual servoing is changed as
r=JTK % - K, i+ G(q)+F(q).

The same conclusions as Theorem 3 can be obtained.
The regulation error of the PD-like visual servoing is
caused by 77, which is the observer uncertainty.
Once G, F, and J are not known exactly, the

regulation error could be bigger or even leads the
whole system to instability. We will discuss this
problem in next section.

Remark 2: The Lyapunov function (23) for the
stability analysis includes joint velocity ¢ and image

position ¥;, Joint position ¢ does not appear in

this equation. But from robot inverse kinematics, we
can conclude that ¢ =¢&(x) is also bounded.
Remark 3: The results presented in this paper are

local, the bound of sliding-mode observer can only be
established in a finite time ¢. We have to estimate

the upper bounds of all uncertainties, such that K,
can be decided.

4. STABILITY ANALYSIS OF VISUAL
SERVOING WITH NEURAL COMPENSATION

In this section we consider the friction and the
gravity are not known absolutely, there exist
uncertainties in the Jacobian matrix and the camera

model. Let us define j(q) as the estimation of

J{(gq), it is assumed that the estimation error is
bounded as
Assumption 3: 77JAJ775 <1y, 27)

here 77; is upper bound matrix of the uncertainty of

Jacobian matrix, A, =A% >0.

The performance of the hand-eye coordination
system largely depends on how accurately and quickly
the image Jacobean matrix is estimated online. When
the camera model is not exactly known, i.e., visual
space cannot match the world frame exactly, the
incoming images are often corrupted by uncertainties
such as changes in illumination, background noise,
and camera calibration. For regulation case, (5)
becomes

%, =ahR(6) [{x }—{XD+€C(X, )
v (28)
~ahR(6) [K(4")-K(a) |+ e [K(a)];
where e, is visual error. The derivative of (28) is

i, =—ahRJG + e, Jq, (29)

where e, is a matrix, which is defined as e, =¢,.
We assume ¢, is bounded as
Assumption 4: eSTASes <7,

where A, is a positive define matrix. Because x,
and x; are bounded , we have

¥ K,ASK % <

Xy prJ pxs =T,
T{wT p-T= p-1 (30)
X (KPR 7sR Kp) X, <1y,

where 7, and 7, are positive constants.
The following theorem will prove that the uncertainty
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in the estimation of image Jacobean matrix will not
destroy the stability. Since we will use neural
networks to estimate friction and gravity, the
estimation speed will be slowed down, this problem is
demonstrated in the simulation.

By neural networks approximation theory [20], the
unknown friction and gravity of (2) can be expressed
in the form of RBF neural networks (9)

G(q)+F(q)=W"oc(V x)+1,, (31)

T .T T * *
where x:[q , 4 ] , W', V° are some fixed

bounded weights, the »n- dimensional vector

function o() is Gaussian function. 7, is the
approximated error, whose magnitude depends on the

values of W* and V*. According to the Stone-
Weierstrass theorem [24], there exists a RBF neural
network which can approximate a nonlinear function

in any accuracy, so we can assumed that 7, is

bounded as
Assumption 5:

Mg A gty <15, | (32)
where 77, is a positive constant. Friction and gravity
can be estimated as

G(g)+F(q)=W, o(/x),

where Wt and I}t are the weights of the neural

networks. It is clear that all Gaussian functions, used
in RBF neural networks, satisfy Lipschitz condition

=c(""x)-c(VTx)=D V x+v,, (33)
where v, is Taylor approximation error, I;; =V
Vt, D, = aa (Z) |Z PT e which satisfies following
assumption
Assumption 6:
VoloVo STl (34)

where 77, is a positive constant. We have following
relation
W'o(V'x)-W, o(V,x)=W,o(V;x)+ W G (35)
=W,o(V,x)+ W'D _V,x+v,
where W, =W*—W,.

PD-like visual servoing with RBF neural network
compensation is

r=J" K% —Kyg+Wo (V,x), (36)

where K, and K are positive definite, symmetric and
constant matrices. The following theorem give a
stable learning algorithm for PD-like visual servoing
with neuro compensation.

Theorem 3: If the proportional gain of the PD
visual servoing (36) is selected as

Ky>Ag +A; +7,+J (37)
and the weights of the neuro compensator are updated
as

LW, =-K,o0x)q, -

LY, =-K,xW'Dyd",

then the closed-loop system is stable, and the average
regulation error ¢ converges to

. 1 (T, = =
s [l 4 <77, o 00

where 0, =K, —[A;‘ HAG 4T |, T2 AL

Proof: The proposed Lyapunov function candidate
is

1 -1 -

V=i Mj+—3 (RT'K,) %

2 q 7 2ah " ( ) *

(40)
Ao o)

where K,, and K, are any positive definite constant
matrices. Derivative (40) along the trajectories of (2),
yields to:

V= qTA/fq+2qTMq+——x ( Rk ) X

s

+tr(WTK 1dW)+rr(VTK d )

14" {20-2¢(q, 4) 4-2[G(q)+F(4)]+ Mg}
+ L dl (RK V&, +or (W] K 207, )+ 0 (VT K, 4,
(41)

Using Property 2 and (29), x, =-ahRJ§+eJg
V=g" [r - (W*o—(V*x) 17, ) ~JTKE + JTeSR“Kpis]
+tr(VI~/,TK;Vl W,] + erV,T K7, ] (42)

Using (34) and (35), we have
L Te,R7K %, + K yq+ W0 (V)
+W*D I7tx Ve +1,g

+tr(WTK 1d W)+tr(VTKv1 jtV) (43)
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By (25),
V = —qTqu - qTUJKijs - qT |:V0' + ng:‘
+gT e, RK %, +tr[(K;' 417, - o(V,x)d" )W]
T tr[(Kv_l 47 3" D,q") 17}.
In view of the matrix inequality (25), grJt €,
RK %, —" vy +7, | and —4Tn,K % in (43)
can be estimated as
T : -1 -1 - = =
-q I:VO' +ng]SqT(Ag +Ao' ) q+'7g +770‘
. ~ T . -1 -
=47 n K % <4 A a+F KA K
< qTﬁJq + isTKpA._]leiS
(44)

g e, RK % <g" JTAS g

+3 (KR e[ A, RK ) 5

N

<q"Jq+ % (KpRTRVK,)

59
where J > JTA;'J. From (38) and (30), we obtain
V<=4  Qpf+ 7 +Tg + 1 + 102, (45)

where O, =K —[A; +A;_1 +77y +j} (45) can be
represented as

; 12 T T T

V< _ﬂmin (QZ) ”q“ + 77g Agﬂg + VO'AO'VO' + e Aaes

<=l Ay g [rel = Ao 1+ Al

>

where
A, =K,A)'K, +K R RTK,
sy = i (02) [l By g = Fma (A ) [
By = Amax (Do ) Vo s Bey| = Amax (Aa) s

>

S0 Bl A,
is an ISS-Lyapunov function. Using Theorem 1 and

, and ﬂ”"o’” are K, functions, V

the bound of 7, 7, Mg and v,, V isbounded.

, the weight W,

So the regulation error X, and ||q
and I}, are stable in the sense of L.

Remark 4: The regulation error converges to the
ball radius (ﬁJ 7o+, +77S). Since we do not

know those values, it is usual to set these values rather
bigger to assure stability. Because the stability

condition (37) requires A;,l and A;l be smaller,
from Assumption 4 and 5 we know this makes 7,

and Mg bigger. If we set A;,l and A;l rather

bigger for better regulation performance, then the
stability can be crushed. The trade-off between 7,

77, and A;l, A; occurs in the theoretical analysis.
For real application, it becomes how to select the
gains of PD control. We know bigger PD gains can

give better performanc but may destory the stability. It
is also correct in (37). When A? and A;l are

bigger (K, is bigger), 7, and 77, becomes smaller.
The method to resolve this trade-off is similar as PD
control, if we require the control system is more stable,
we should choose a smaller K;, or A; and A;l

are smaller, are bigger, the

SO 7,
regulation performances are sacrificed.

The regulation error is also influenced by the prior
known matrices W". Theorem 4 shows that W"
does not influence the stability property, and the

identification error will be convergence by the
algorithm (38). We use the following off-line steps to

get the best W™ :

and 7,

1) W* is started from any initial value.

2) Update the weights of the neural networks
according to (38).

3) If the identification error decreases, W, becomes

the new initial condition, i.e., W" = W,, goto?2).

4) If the identification error does not decrease, stop
off-line identification, now W, is the final value
of W*.

Remark 5: From the definition of the Lyapunov
function (40), we can see that the learning rules (38)
minimizes the tacking error X, and ¢. This
structure is different from normal neural networks
which approximate nonlinear function directly.

If the velocity ¢, the friction and the gravity are
unknown, PD-like visual servoing is a combination of

the velocity estimation (20) and the neuro compensa-
tion (36)

. - d . .+ .
r=J" K % —Kd—q+W,O'(V,x), (46)
ey . .
where s :(xl , x2) . The new PD-like visual
servoing is shown in Fig. 2.

We define estimation errors for ¢ and § as

d A
Eq_q+g’
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Fig. 2. PD visual servoing.

2

d
dt2q q+£1

¢ and g are bounded, which satisfy following
assumptions.

Assumption 7: 8TA WES 1750.
Assumption 8: & A <1,

The following theorem glves the stability analysis of
the visual servoing (46).

Theorem 4: If the proportional gain of the PD
visual servoing (46) is selected as

Kg> A+ A + A+ 77, + T+ MU M+ MT AL M

the weights of the neuro compensator are updated as
X
Vard

47
rd, (47)
o ard

where ¢ is estimated as in (15), then the closed-loop

system is stable, and the average regulation error ¢
converges to

2

Q3 (48)
3775+77g+770+771+772+'750 +77£1’

T—oow

A+ A A +77;
where O; =K, - ‘ g ’ ) e
+J+ MTA M+ MTA, M
Proof: Lyapunov function is
1
_1. . T p-1 ~
szq Mq+——2ahxs (R Kp) X,
1 o (=r 1), 1 T
(7 KWW) er(V K, V) (49)

The derivative of (49) is

553

. d, . 1d d
V =—qT —q +——qT M= +—
dt all 2adr ar? " an’

R . 5T -1 d
+tr(W, K, EW;jH‘r[Vt K, EVJ’

TRk &
s R Kp%,

here
2 ~ [X3
2M5z—2q =2M(G+¢)

=2r-2C(q, ) ¢-2[G(q)
M(q+g) Mg+ Me.

+F(g)]+2Mg
M d

Similar as (41),

* * T ~
. (o )+, )-ITK 5
dl .

U s T RK R, + Me + Me

T 14 Te-1d
e (WK LW o (VTR 277 ),
By Assumption 7 and 8 %éngl and %QATM{;‘

can be estimated as
d AT = d 2T v 4T a=12sd ~
4 Ms SN +44 M A€1ME ,

d AT vfoem dAT'T—I'dA
Eq MSS?]EO‘FEq M A€0ME(]

Combine (26) and (45)
d
V<—Eq Q3 q+775 g + 1] T+ + gy + 175
where
A A A 47
O3 =Kz -

T+ MUA M+ MTAG M |

The other part of the proof is the same as Theorem 4.

The following factors affect the PD-like visual

servoing (46)

1) 7, and A}
sliding-mode observer.

2) 7, and % K,A'K %
matrix error.

3) = and 7, are corresponding to image error.

4) 7, and A;l
friction and gravity.

5) 7, and A
neural networks.

Theorem 1-4 need 8 assumptions on the bounds of

the uncertainties Assumption 1-8. These assumptions
are not difficult to be satisfied. Any robot dynamic

correspond to the error of the

are caused by Jacobian

are the estimation error of the

are Taylor estimated errors of
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satisfies Assumption 1. Assumption 2 is a direct
conclusion of Theorem 2. Since Jacobian is a matrix
function of robot dimension and joint angles, it is
bounded, so Assumption 3 is satisfied automatically.
The bound of image positions means e, is bounded,

since e, is smooth é.=e; is also bounded, so

Assumption 4 is right. Assumption 5 is a conclusion
of Stone-Weierstrass theorem [24], i.e., if we use RBF
neural networks to approximate the continuous

function G(q)+ F(g), the approximation error is

bounded if the initial condition for the weights are
chosen near to their optimal values. The correctness of
Assumption 6 is that the active functions of RBF
neural networks are Gaussian functions, which satisfy
Lipschitz condition. Assumption 7 is the same as
Assumption 2. For Assumption 8, & is estimated

error for %(j(@) and & =¢, so g 1is corres-
ponding to <%, in (15), since A%, +S(%,, e)-Ke,

is bounded, & is bounded.

Remark 6: Any large gain introduced into a
closed-loop system will effect the performance. In this
theorem K} is required to be big enough in order to
assure robust stability of visual servoing, but this big
K, will also enlarge noise or disturbances. By classical
control theory, too big gain may cause vibration in the
tracking process. In next simulation section, we can
find this problem.

5. SIMULATION

This paper focuses on theoretical analysis of visual
servoing. We will propose several simulations to
support the theoretical results discussed in this paper.
We believe these simple simulations will not affect the
theoretical values of this paper. These theoretical
results are helpful for visual servoing experiment in
the following items: (a) we can assure that the visual
servoing is safe for application; (b) the theorems give
rules on how to choose the parameters of PD-like
visual servoing (K, should be bigger than the upper
bound of the uncertainty); (c) the theorem give upper

'y

y

Fig. 3. Two-links robot.

bounds of regulation errors.

To develop the simulation, a two-link planar robot
manipulator is considered. The manipulator is in
vertical position, with gravity and friction. A scheme
of the two-link robot manipulator is shown in Fig. 3.
The elements can be represented as

M]l M12
M(q)z[M My, |
21 22
Mllzml(r12/4+ll2/3)
#my (413 1441313+ by cosg, )
+my (I +3/413 + 41y cosqy ),
M12 =my (r22/4+122 /3+é‘1112 COSQ2)+mL122 = Mz],
M22 =m2(r22/4+122/3)+mL122,

C(q q) - _quz sin 9> _Vm sin ) (ql + q2)
* V7] vdrsing, 0 ’

Vg = (Lmobidy +myhly),
(%m1 + mz) gl cosq
G(q)= +%m2g12 cos(g; +42) |
| 5mygh cos(qy +45)
[ widy +kysign(qy) }

| V24a + kysign(qs)

The robot parameters are: my=4.8, my, =33,
r1=0.5, r2=05, =1 L=1 y=11, v, =12,
k =0.8, k2=0.8, g =9.81. The world (base) frame is

x=[cosq +1,cos(q +g5),
y= l] sin q + 12 Sin(q] + qz)
The orientation frame (orientation matrix)
i -ig=cos(q+q2), i+ Jjo=sin(q +q),
Ji-ig=-sin(q +g2), Jji-Jjo=cos(q +qs),

where i, j are standard orthonormal unit vector.
Forward kinematic

K(q)-= lycosqy +1, cosq, cosq, — I, sing; sing,
| I;sing, +1, cosq, sing, +1, cosg,sing, |

Velocity kinematics is

P [—11 sing; —/; sin(q; +g,)

~1, sin(q + g, ):)[‘?1 J
Licosgy +1cos(q +q,)  lrcos(q +q2) || 4
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So Jacobian is

_ {—11 sing, — I, sin(q; +¢q;)

) T
~l, sin(q; +q;)
Iy cosqy +1, cos(q; +q,) ’

I, cos(q; +q3)
FOI' the camera we ChOOSC

0.7 -0.72
R= , a=50, z=1, 1=0.01.
072 0.7

With these parameters, the end-effector in Cartesian
space is transformed into visual space by (4). The
following simulations are in the visual space. Here we
do not consider pixels, by the factor « all the
position are in meters. We compare three kinds of
visual servoings: normal PD-like visual servoing [1,9],
visual servoing with neural compensation [8] and
visual servoing with velocity observer and neural
compensation proposed in this paper. We consider two
different conditions: 1) gravity and friction are known,
2) joint velocities are known. It is well known that
normal PD-like visual servoing with both gravity
(friction) and joint velocities measurement can reach
very good tracking performance, but when gravity
(friction) and joint velocities are not available, the
new visual servoing presented in this paper will give
better performance than the existing approaches.
Because without joint velocities, PD-like visual
servoing becomes PD-like visual servoing, and
without gravity and friction compensation, PD control
will destroy zero steady-state error [15].

5.1. Normal visual servoing

We first use a normal PD-like visual servoing
(PDn) to regulate the angles of the two-links robot.
The desired angles are square waves. If the gravity
and friction are unknown, the visual servoing is

r=J K, % ~K4q.

For this example,

* .
T X, — X
2 Ys = Vs Kb

300 0 30 0
where K, = , K;=
P 0 300 0 30

results are shown in Fig. 4. There are two problems
for this standard PD visual servoing: (a) we have to
use angle velocity [g, ¢,]; (b) the steady state

}. The regulation

error is not zero. If we know the gravity G(g) and the
friction F(q), the visual servoing becomes

r=J"K, % —Ky9+G(q)+F(q).

0.4
Positions (meter)

0.3¢ b

- 0.3 . . \ ) _ Time (second)
0 10 20 30 40 50 60 70

Fig. 4. Normal visual servoing.

The steady-state error is zero.

5.2. Visual servoing with neuro compensation
When the gravity and friction are unknown, they
can be uniformly approximated by a radial basis

function as in (9), G(q) +F] (q) ~ Vf{o- (I;,'x). The Gaussian
function is

l_ci)2

100

N
N A Vx:
aj(Vx)zexp —z’:l( ad

>

where the spread p; was setto /50 and the center

¢; is arandom number between 0 and 1. The center
values of each hidden neuron are initialized randomly.
This possibly affects the performance of the system
since we cannot assure that the randomization is
useful enough to separate each hidden neurons

properly. In this simulation, we found that the weight
Vf/t affects the performance more than the center c;.

Model complexity is important in the context of
system identification, which is corresponded to the
number of hidden units of the neuro model. In this
simulation we try to test different numbers of hidden
nodes, we find that after the hidden nodes is more
than 10, the regulation accuracy will not be improved
alot.

The control law is (36)

T xXr—x 5 A
[‘}J’K{ s S}Kd 71 +Wo (Vx)
02 Vs = Vs

A

starting with W*=0.7 and V*=0.7 as initial
values. Even though some initial weights are needed
for the controller to work, no special values are
required nor a previous investigation on the robot
dynamics for the implementation of this control. Fig.
5 shows the control results. The theoretical result is
demonstrated in Theorem 3.
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02 T _
Time (second)
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Fig. 5 Neural visual servoing.

5.3. Visual servoing with sliding mode observer and
neuro compensation
When the joint velocity is not available, we use the

sliding-mode observer (14) to obtain ¢ =[4, qz]r.
The observer-based PD-like visual servoing (20) is

T x*—x ;
[I}ZJTKP s s _Kd ?1

2 y: Vs ‘?2

The regulation results is shown in Fig. 6. Fig. 7 gives
the responses of the sliding-mode observer, which is
demonstrated in Theorem 1.

We can see that when gravity and friction does not
exist, sliding mode observer-based PD visual servoing
is effective. Rapid convergence of the observer is
essential for the PD-like controller, because it forms
part of the feedback. When gravity and friction is
presented, we have to use compensation approach to
eliminate steady state error, these theoretical results
are demonstrated in Theorem 2.

In the worst case, friction and gravity exist and joint
velocity is not available. We first use observer to
estimate the joint velocity, the PD-like visual servoing
without compensation is

T x*—x ;
[ I}ZJTKP i s _Kd ?1
T2 ys_ys q"z

The result is shown in Fig. 8. Then we use PD-like
visual servoing with neuro compensation

T x*—x ; ~ ~
{lilzJTKp LY (_1‘ +W,o (V,x),
) Vs = Vs 6}2

where K, should be big enough, such that (see
Theorem 4)

Positions (metgr)
R

-0.8 b
Time (second)

-0 10 20 30 40 50 60 70

Fig. 6. Observer-based visual servoing.
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0.4 b
0.3 b
0.2! B

01 ql/q. ]

0

ol [ ,

0.2 | 7./4, J

-0.3 1

_0'4[] Time (second) |
.0.50‘ :

10 20 30 40 60 70

B
o

Fig. 7. Sliding mode observer.
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Fig. 8. Unknown gravity and friction.

K;>A;' + A; + A T T+ MTA;;M + MTA;(‘)M.

We choose the parameters for the upper bounds of the
uncertainties as: the sliding-mode observer A;l =
diag(1), estimation of the friction and gravity
A; =5, Taylor estimation error A;l =diag(l),

Jacobian matrix error 77; =diag(5), M T A;llM +
MTA;éM =20. So Kj is selected as K, = diag(40).
We found that when K, > diag(50), the response of

the visual servoing becomes vibration. The reason is
explained in Remark 6. The result is shown in Fig. 9.
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Fig. 9. Neural observer-based.
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Fig. 10. Neural high-gain observer-based.

We can see that the combination of sliding-mode
observer and neuro compensator is a good way to
improve the performance of the normal PD-like visual
servoing, when gravity, friction and joint velocities
are unknown. Compared Fig. 4 with Fig. 6 and Fig. 9,

we can see that the response speed is drastic decreased.

Because two complete systems: sliding mode observer
and neural networks are added in the simple PD
controller.

For the same conditions, we use high-gain observer
[25] to obtain the join velocities. The high-gain
observer is

A =hy+ 22 -2)
ac' 2 T 0N Y
d. 15 .
——Xy = (xl_xl),

dt 1002

T
=[(j, %é} . The wvisual
servoing is shown in Fig. 10. We found that high-gain
observer based visual servoing has faster response
than sliding mode observer, but the overshot is bigger,

and there exists larger steady state error.

where %= [#, fcl]r,

6. CONCLUSIONS

In this paper, we have proposed a new PD-like

visual servoing based on sliding-mode observer and
RBF neural network compensator. The main
contribution of this paper is the stability analysis for
the closed-loop system by means of Lyapunov and
input--to-state stability techniques. Asymptotic stable
of sliding-mode observer can be reached provided that
the observer gain is bigger than the upper bound of the
uncertainty. Robust stabilities of PD-like visual
servoing are proved in three cases: PD control with
velocity observer, PD contro! with neural compensator
and PD control with velocity observer and neural
compensator. Although these three cases require
different conditions, they need a common condition:
the gain of the PD controller is bigger than the upper
bounds of the uncertainties. Future work will be
carried out on the improvement of transient properties
of the PD-like visual servoing.
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