• 제목/요약/키워드: Sliding mode method

검색결과 589건 처리시간 0.028초

An Integral-Augmented Nonlinear Optimal Variable Structure System for Uncertain MIMO Plants

  • Lee, Jung-Hoon
    • 전기전자학회논문지
    • /
    • 제11권1호통권20호
    • /
    • pp.1-14
    • /
    • 2007
  • In this paper, a design of an integral augmented nonlinear optimal variable structure system(INOVSS) is presented for the prescribed output control of uncertain MIMO systems under persistent disturbances. This algorithm basically concerns removing the problems of the reaching phase and combining with the nonlinear optimal control theory. By means of an integral nonlinear sliding surface, the reaching phase is completely removed. The ideal sliding dynamics of the integral nonlinear sliding surface is obtained in the form of the nonlinear state equation and is designed by using the nonlinear optimal control theory, which means the design of the integral nonlinear sliding surface and equivalent control input. The homogeneous $2{\upsilon}(\kappa)$ form is defined in order to easily select the $2{\upsilon}$ or even $(\kappa)-form$ higher order nonlinear terms in the suggested sliding surface. The corresponding nonlinear control input is designed in order to generate the sliding mode on the predetermined transformed new surface by means of diagonalization method. As a result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent disturbances. The prediction/predetermination of output is enable. Moreover, the better performance by the nonlinear sliding surface than that of the linear sliding surface can be obtained. Through an illustrative example, the usefulness of the algorithm is shown.

  • PDF

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

Robust Adaptive Sliding Mode Control of Robot Manipulators Using a Model Reference Approach

  • Lee, Tae-Hwan;Bae, Jun-Kyung
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권1호
    • /
    • pp.36-44
    • /
    • 1998
  • In this paper, a robust adaptive sliding mode control algorithm for accurate trajectory tracking of robot manipulators is proposed, with unknown parameters being estimated on-line. The controller is designed based on a Lyapunov method, which consists of adaptive feed-forward compensation part and a discontinuous control part. It is shown that, in the presence of the uncertainty and the disturbances arising from the actuator or some other causes, the tracking errors is bound to converge to zero asymptotically. An illustrative example is given to demonstrate the results of the propose method.

  • PDF

적응 슬라이딩 모드제어를 통한 PMSG 풍력발전시스템의 MPPT제어 (Mppt control of PMSG wInd power system using adaptive sliding mode control)

  • 정형철;천관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1060-1061
    • /
    • 2015
  • This paper presents the control method of MPPT (Maximum Power Point Tracking) using back-to- back converter. The windturbine system use PMSG(ermanent Magnet Synchronous Generator) system considering low maintenance costs and driving performance at low wind. This paper use the adaptive sliding mode control to the torque control. Proposed method was analyzed mathematically.

  • PDF

오차 자기순환 신경회로망 기반 반능동 현가시스템 제어기 개발 (The development of semi-active suspension controller based on error self recurrent neural networks)

  • 이창구;송광현
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.932-940
    • /
    • 1999
  • In this paper, a new neural networks and neural network based sliding mode controller are proposed. The new neural networks are an mor self-recurrent neural networks which use a recursive least squares method for the fast on-line leammg. The error self-recurrent neural networks converge considerably last than the back-prollagation algorithm and have advantage oi bemg less affected by the poor initial weights and learning rate. The controller for suspension system is designed according to sliding mode technique based on new proposed neural networks. In order to adapt shding mode control mnethod, each frame dstance hetween ground and vehcle body is estimated md controller is designed according to estimated neural model. The neural networks based sliding mode controller approves good peiformance throllgh computer sirnulations.

  • PDF

New Sliding Mode Observer-Model Following Power System Stabilizer Including CLF for Unmeasurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권3호
    • /
    • pp.88-94
    • /
    • 1997
  • This paper presents the sliding mode observer-model following (SMO-MF) power system stabilizer(PSS) for unmeasurable state variables. This SMO-MF PSS is obtained by combining the sliding mode-model following (SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). The control input of the proposed MO-MF PSS is derived by Lyapunov's second method to determine a control input that keeps the system stable for unmeasurable plant state variables. Simulation results show that the proposed SMO-MF PSS including CLF is able to reduce the low frequency oscillation and to achieve asymptotic tracking error between the reference mode state and the estimated plant state at different initial conditions.

  • PDF

비선형 스위칭 평면을 이용한 슬라이딩모드 제어기 설계 (The Design of Sliding Mode Controller with Nonlinear Sliding Surfaces)

  • 조현섭
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3622-3625
    • /
    • 2009
  • 본 논문은 고정 슬라이딩면을 갖는 가변 구조 제어기의 단점인 도달영역에서의 파리미터의 불확실성과 외부 외란에 대한 민감성을 감소시키는 방안으로 고정 슬라이딩면 대신 비선형 슬라이딩면을 제시한다. 비선형 슬라이딩면을 통하여 시스템 상태 궤적이 초기 위치에서부터 평형점에 이르기까지 외란과 파라미터의 불확실성에 강인하게 되며 아울러 고정 슬라이딩면까지의 도달시간 뿐만 아니라 평형점까지의 도달시간도 감소하게 되는 특성을 보이고자한다. 제안된 제어 구조의 효과는 시뮬레이션을 통해 증명하였다.

시변 스위칭 평면을 이용한 로보트 매니퓰레이터의 견실한 제어기의 설계 (A Robust Controller Design for Manipulators using Time-Varying Sliding Manifolds)

  • 박귀태;김동식;임성준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.391-395
    • /
    • 1990
  • A new control algorithm is developed to achieve the robust performance of the system during the overall control process. Time-varying sliding manifolds are proposed to remove the reaching phase which is one of common shortcomings of variable structure control scheme. A necessary and sufficient condition for the existence of a sliding mode on the newly proposed time-varying sliding mode on the newly proposed time-varying sliding manifolds is derived by Lyapunov's second method. The digital simulation results show that the newly proposed control algorithm is superior to the typical variable structure control algorithm with respect to the robust performance of the system. The simplicity of the proposed control algorithm encourages control engineers to implement the proposed control algorithm in many control problems.

  • PDF

선형 슬라이딩 평면의 개선된 존재 조건 (An Improved Existence Condition of Linear Sliding Surfaces)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.851-855
    • /
    • 2007
  • This paper deals with the problem of designing a linear sliding surface design for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. We show that our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계 (Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law)

  • 이준구
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.