• Title/Summary/Keyword: Sliding mode method

Search Result 590, Processing Time 0.024 seconds

A position control of step motor with minimum time sliding surface (최단시간 슬라이딩 면에 의한 스텝모터의 위치제어)

  • You, Wan-Sik;Park, Hyung-Nam;Kim, Yeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.99-104
    • /
    • 1995
  • For the robust control, sliding mode control has gained a great attention. Sliding mode control has the good robustness, because it makes the state of system reach the origin of the state space, by a varying the structure of system on the sliding surface. The slope of sliding surface affects to the control performance. If it is small, robustness is increased at the expense of reaching time. On the contrary, if it is large, reaching time is decreased at the expense of robustness and overshoot. In this paper, to design the optimal sliding surface, optimal control theory is introduced. To confirm the validity of the proposed method, the position control of step motor is implemented.

  • PDF

Variable Structure Controller Design For The Nonlinear System Using Sliding Sector (슬라이딩 섹터를 이용한 비선형 시스템의 가변 구조 제어기의 설계)

  • Seo, Ho-Joon;Park, Jang-Hyun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2661-2663
    • /
    • 2000
  • In general, to reduce chattering in sliding mode control, a boundary layer around the sliding surface is used, and a continuous control is applied within the boundary. In this paper we propose the design method of sliding mode controller with sliding sector. To do this, the variable structure controller is designed for the linear system with uncertainty using sliding sector. The control law designed in the paper transfers the system state from outside to the inside of the sliding sector and ensures that some norm of the system state keeps decreasing.

  • PDF

Optimal Sliding Surface using LQR Method For Design of Sliding Mode Controller (슬라이딩 모드 제어기 설계를 위한 LQR방법을 이용한 최적 슬라이딩 표면 결정)

  • 이상현;민경원;이영철;황재승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.419-426
    • /
    • 2003
  • An efficient procedure using LQR method for determining optimal sliding surfaces appropriate for different controller types is provided. The parametric evaluation of the dynamic characteristics of sliding surfaces is peformed in terms of SMC controller performance of single-degree-of-freedom(SDOF) systems. The control force limit is considered in this procedure. Numerical simulations for multi-degree-of-freedom(MDOF) systems verify the effectiveness of proposed method.

  • PDF

Hybrid Rule-Interval Variation(HRIV) Method for Stabilization a Class of Nonlinear Systems (비선형 시스템의 안정을 위한 HRIV 방법의 제안)

  • Myung, Hwan-Chun;Z. Zenn Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.249-255
    • /
    • 2000
  • HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems, where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two modes: I-mode (Integral Sliding Mode PLC) and R-mode(RIV method). In I-mode, SMC is used to compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the overcontraction problem that the states are out of a rule-table can happen by the excessive reduction of rule intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode. Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce Its effect in the control input, compared with the previous researches. Finally, the proposed method is applied to stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments.

  • PDF

LMI-based Sliding Mode Speed Tracking Control Design for Surface-mounted Permanent Magnet Synchronous Motors

  • Leu, Viet Quoc;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.513-523
    • /
    • 2012
  • For precisely regulating the speed of a permanent magnet synchronous motor system with unknown load torque disturbance and disturbance inputs, an LMI-based sliding mode control scheme is proposed in this paper. After a brief review of the PMSM mathematical model, the sliding mode control law is designed in terms of linear matrix inequalities (LMIs). By adding an extended observer which estimates the unknown load torque, the proposed speed tracking controller can guarantee a good control performance. The stability of the proposed control system is proven through the reachability condition and an approximate method to implement the chattering reduction is also presented. The proposed control algorithm is implemented by using a digital signal processor (DSP) TMS320F28335. The simulation and experimental results verify that the proposed methodology achieves a more robust performance and a faster dynamic response than the conventional linear PI control method in the presence of PMSM parameter uncertainties and unknown external noises.

Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System (자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기)

  • Yu, Jun Young;Kim, Wonhee;Son, Young Seop;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.

Robust speed control of DC motor using Expert Sliding mode controller (전문가 슬라이딩 모드 제어기를 이용한 직류전동기의 강인한 속도제어)

  • 지봉철;박왈서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2000
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. Generally, it is known that sliding mode controller has robustness. But, after it is assumed that we known the disturbance uncertainty, sliding mode controller is designed. Thereafter, if we are not known th disturbance uncertainty then controller design is difficult. As a method solving this problem, in this paper, Expert sliding mode control method for motor control system is presented.The proposed controller can eliminate load disturbance effectively. The effectiveness of the control scheme is verified by simulation results.

  • PDF

Variable Structure Control Design Based on Eigenvalues Assignment of Sliding Mode (슬라이딩 모드 고유치 설정에 기반을 둔 가변구조 제어 설계)

  • Hong, Yeon-Chan;Lee, Tae-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2207-2213
    • /
    • 2010
  • A new scheme for variable structure control design which is based on eigenvalues assignment of sliding mode is developed. In conventional methods, generally, specific type of system matrix like canonical or regular form is required to construct a switching surface. Furthermore, the methods are not explicit. The new method in this paper solved the problems. No special type of system matrix is required and very explicit. It is shown that the switching surface can be constructed and determined uniquely without any dependency on the system form. The proposed method is based on the fact that the dynamics of sliding mode is determined by system zeros. Finally, a numerical example is given to verify the validity of the results studied in this paper.

On-Line Sliding Mode Controller Design from a Single Closed Loop Test (단일 폐루프 테스트를 통한 온라인 슬라이딩 모드 제어기 설계)

  • Bae Jun-hyung;Lim Dong-kyun;Suh Byung-sulh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The calculation of parameters of a process model is modified to find better sliding mode controller for a process. A design method by Camacho has such problems as chattering and overshoot due to the Taylor the approximation errors for the time delay term of the first order model. In this paper, a new design technique for a sliding mode controller is proposed by introducing the modified Pade approximation considering the weight factor. With the proposed method, the process response can be directly used to estimate the system parameters without any numerical processing.