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Abstract

HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems,
where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome
the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two
modes: I-mode (Integral Sliding Mode FLC) and R-mode(RIV method). In I-mode, SMC is used to
compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In
R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which
makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the
new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the over-
contraction problem that the states are out of a rule-table can happen by the excessive reduction of rule-
intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode.
Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce its effect
in the control input, compared with the previous researches. Finally, the proposed method is applied to
stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments

1. Introduction control theories [3]-[7], and intuitive methods [8]-
FLC(Fuzzy Logic Control) fits well when [10] to a stability problem of FLC. Among them,
systems to be controlled is only partly known, there have been some researches to consider

difficult to describe by a white box model, and MAE(Minimum Approximation Error) {11] for a
few measurements are available, or the systems stability of FLC. In 1993, LX.Wang [i1]

are highly nonlinear [1]. Especially, with a proposed to use an adaptive law to tune
linguistic prior knowledge, FLC can play arole of =~ membership functions automatically with a
man-machine interface, which makes systems supervisory controller appended to stabilize the
controlled easily. But, at the same time, the total system. In [11], the concept of MAE is used
heuristic characteristics caused by a linguistic to formulate a stability problem of FLC. B.S.Chen
knowledge deteriorate FLC to be analyzed for a [14] presented a modified adaptive law to advance
stability. Since a stability is the first and last the performance of the controller proposed by
concern for any system design and a fundamental [11], using Riccati-like equation. C.Y.Su [12]
issue in every control system [2], many researches proposed a design method to insert a sliding mode
have been done in applying robust and nonlinear into the controller and the modification renders
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the possibility to prove a stability of FLC. The
method presented by Y.S.Lu {13] is to use FLC
and SMC(Sliding Mode Control) simultaneously
in an additive form, where MAE is compensated
by SMC. But, before applying the method to a
system, MAE is only assumed very small value
and no analytical upper bound of MAE is
considered. Such a disadvantage makes it difficult
to apply the method even when a system is
perfectly known. In addition, an additional
feedback control input is necessary for the
convergence of a sliding surface and there is no
error bound considering even the case that the
switching condition {18] is not guaranteed.

In this paper, a new method, -called
HRIV(Hybrid Rule-Interval Variation) method, is
proposed to stabilize a class of nonlinear systems
with FLC taking into account MAE. HRIV
method consists of two modes: I-mode(Integral
Sliding Mode FLC) and R-mode(RIV method). In
I-mode, SMC and ADC construct a basic
structure to show an asymptotic stability of FLC
compensating for the analytic upper bound of
MAE caused by the heuristic characteristics of
FLC. Especially, a new sliding surface is designed
including an integral part, which makes no
additional feedback part included in a control
input and gives the upper bound of the state
performance. In R-mode, RIV method reduces
interval lengths of rules as states converge to an
equilibrium point, which makes the defined
Lyapunov function candidate negative semi-
detinite without considering MAE, and the new
uncertain parameters generated in R-mode are
compensated by SMC. Moreover, since the newly
generated parameters are alleviated by increasing
a learning rate and decreasing RIV laws, RIV
method can reduce an’ effect of uncertain
parameters in a control input. But, in RIV method,
the over-contraction problem that the states are

out of a rule-table can happen by the excessive

reduction of rule-intervals. To solve the problem,

RIV method is complemented with the dynamic
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modification of rule-intervals including its
increase and changed into I-mode.

Section 2 formulates a
DAFLC(Direct Adaptive FLC), giving some
related definitions. In Section 3, Integral Sliding
Mode FLC is presented and RIV method is
cooperated with the Integral Sliding Mode FLC in

Section 4. Section 5 completes HRIV method.

problem of

2. Problem Formulation
Consider the following nonlinear system

a7 = fl i, X" rby, y=x, (1)

where f:R" — R is an unknown continuous

function, b is an unknown constant, and

ue Rand ye R are the input and the output of
the system, respectively. If the function f and
the constant b are known exactly, then an ideal
control input uj, is obtained by

up =[-f@+yP +k"ellb, @)

where )_c=[x,5c,---,x("‘”]T‘eSMx is a state

vector, y,€ R is a reference input, e=
[V =5 Yy = X, YOV DY ¢ R" s an
error vector, and k =[k,ky,":,k,} € R" is a
design parameter vector. Substitution of (2) in (1)

yields
e(")+k,e("—”+---+kne=0, 3)

which can be stabilized exponentially under

k,>0 for i=1,---,n. A proposed controller
up =up(x18p)+ Kpsgn(s), 4)

where 8, =[6p,,0p,,":,0p,)" € R™ is a center-
value vector of consequent membership functions,

Kp e R is a positive constant, and s R stands

for a sliding surface specified in Section 3, can be

considered as an integration of FLC(Fuzzy Logic
Control) and SMC (Sliding Mode Control).
Especially, FLC is given by



1p(x165)=05¢ (0, (5)
and
Sy ()= IH:’:I Mg (%)) /[2’7:1 (H:;l Mg (X))
7(6)
(i:‘l""’n’ j=17 7m)a
is  defined as FBEF  where U gij is

MF(Membership Function), n is considered as a
number of states, and m as a number of fully
generated rules. Using (2), (4), and (5), MAE is
defined as

Wp Euu(ﬁlg*p)_u*b,

N
where

v . *
8 =arg mlnlgnlgsMﬂn [SuPlélst\ up(x16,)—upjl

(8)
and My , M, are the design parameters based
on practical constraints. The equation (7) means
that. although best rules are obtained by a
heuristic method, there always exists MAE except
some special cases explained in Section 3, which
leads to analytic difficulty in the following error
equation. Two control laws (2) and (4) applied to
(1) results in

" = kT e+ bluf —up(x168 ) - Kp sgn()1,(9)

or, equivalently,
¢=Aethplup—up(x10,)-Kpsgn(s)]  (10)
= Ag+Ql)(B;;§D(,_v)—QDKD sgn(s)—b p,wp

( ! 1 )

where
b, =[0.---0,b)" € R", ¢, =0,-8,€R",

and
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0 1 0 01
0 0 0
A=| : : : : : le R™",
0 0 0 XU |
L kn —kn—l _kn—7 _kl_

3. Integral Sliding Mode FLC
In [19], it is proved that the relation between
MAE and the

difference

rule-intervals, which means
the

trapezoid MFs, is given by

between adjoining  pseudo-

ou” (x)

o<p W-n o) <Y

n; »(12)

where 77, >0 is the length of rule-interval in ith
is the
According to (12), the less the length of the rule-

state and n dimension of states.

interval, the less MAE. Moreover, if the triangular

MFs are used, (12) changes into

o%u" (x)
E))ci2

n

o< (x) -u (x| Q)L < %Z

i=1

n’>(13)-

By (13), the special type of the two-dimensional
ideal controllers

® _ 1 1 [
u (5)—Z,,=0212=o“h“12x1 X, (14

can be approximated perfectly by FLC, which
means that MAE is zero.
For DAFLC, it is assumed that

® thesignof b is known,

[ ] ]a)DL < oo is known, and

™ |£(t)|2 < M_\.,lQZ (t)L <M, for Vi20.
Consider a SMC gain

Kp=lwp| . (15)

and a sliding surface s as

s=p PlU+P e~ A J;g(r)dr]sgn(b) (16)

= p, Phsgn(b), an



where

/_7=(I+P")g—Aj;g(r)dre R", (18)

P=[p|.p’,---,pn]eR”x" is a symmetric

positive definite matrix satisfying the Lyapunov

equation
ATP+PA=-0, (19)

where Qe R"™" is a positive definite matrix,

e R™" is an identity matrix, diag{l,1,---,1],
and J;r(:(‘l')c/f = [J:)el (t)dt, J(:el (T)dT,“-,J(;e,, (T)dT]T .

Especially, the matrix A is designed to ensure
that the sliding action of s is stable. To prove
the stability of FLC with the presented controller,
(4), in (11), define the Lyapunov function
candidate '

b
2yp

1 1
V=g Per——970,+=y"y, (20)

where y =-¢+Phe R",yp >0 is a constant,
and b is assumed to be positive(b>0). The
derivative of V is given by

. 1 .7 1 7 . b 1 T .
V=—¢ Pe+—e Pé+— + , (21
2~ - 2= € YD QDQD Z V_, ( )

] b .
=-2¢ Qe+ =0, (rpe’ p,&,(D+8))
Yp

+(=¢ +h" PY(=&+ P(U + P )é— Ae))
-¢"Pb(Kpsgn(s)+wp). 2)
In (22), the matrix Q comes from the Lyapunov

equation and, since plleR" indicates the last
column of the matrix P, the relation

eTPbD =eT_p b, (23)
1s valid. Applying (11) to (22) gives

. I b .
V=-oe Qet—07 (rpe’ p.§ (D+6,)
2 Yo~ =n2
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+(~¢" +h" PYPhy (@7 £ (x)-(Kp sgn(s) +wp))
—gTP_lgD(KD sgn(s)+wp) (24)

:__;_ETQg_hTPZQD(KD Sgn(s)+w1_))

) A
0,0 P8, WY p, TH P )L, ¥E,)-
D

(25)

Since Q :) is assumed to be a constant vector
¢,=8p- (26)

Therefore, an adaptive law to tune the center-

value vector of consequent MFs
0p=Yph Pp & (0 @7

= YDséD (E) ’ (28)

is obtained in (25). By the second assumption,

1% S—%QTQQ<O, 29)

will be obtained, which means that the Lyapunov
function is negative semi-definite. Since it is
difficult to say about an asymptotic stability
because of the negative  semi-definite
characteristics of the Lyapunov function.
Barbalat’s lemma [16](17] can be used to check a

convergence of an error function.

4. Rule-Interval Variation Method

The RIV method comes from the relation
between MAE and rule-intervals in (12) and is
limited only to a regulation problem in this paper.
In the case of a regulation problem, FLC can be

transformed to use errors as input variables

instead of states as follows;

“L»(_‘i'Q):“c(Zm -x10), (30)

where y =[y, ,0,---,0]" € R". Moreover, with

" (30), the upper bound of MAE in (12),



ou” (x)

<l (x)—u, (eIB)l <2,‘ 7;.(31)

is still valid without any change. The RIV method
means in short that rule-intervals are decreased to

make the defined Lyapunov function negative

semi-definite without  considering MAE.
Generally, since Q_* is a constant vector,
9=-6, (32)

is valid. But 8" becomes a time-varying vector
in RIV method because the decrease of rule-
intervals makes the ideal center-values of the
consequent MFs move sequentially. Accordingly,
(32) is rewritten as

1.

6=0"-

(33)

Since there exists a

n,=0 vyields 6 =0,
constant @, >0 that satisfies the relation

9; 7 Z?=I|T7i| , (34)

(i=L-yn, j=1--,m),

For DAFLC, it is assumed that
of b is

considered for convenience,

® the sign known: b>0 s

® < is known, where
D>
¢, =19p . @p29p,l’ € R", and

. ‘_’(’)12 5_M¢',|Q;(t)l, SMy, for Vt20.

Consider the Lyapunov function candidate

_1.7p,
V=se g+——¢ 9, = SYy+ 2,, o

(35)
where  ap(r)  and  7p(t)  are
functions for Vr>0. The derivative of V has

the refation

positive

V<= Le Oc—bs(Kp sgn(s) +fop|_) +—=97 61,
2 “ Yp~—
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n b . baD'
+Zi=|(;l‘;’70 o —2 1) (36)

where (27), the adaptive law, is used under the
same conditions. By (12), (34), and the third

assumption,

1% <——e "0e - b|s|KD Mgl)

‘ 2‘ IITID,
+,z‘ la (7701

IslnDl

o0

8
%pi +a
TI Di ax

Cp;

1

(37

Define a RIV rate and a RIV law as

“D

>0, Vr20,(38)

oo

aDt (t) aDl (t)

i

and

(1) = (2218 D’E ; oy (O] OPTi (1), (39)
Dl

respectively. Setting the SMC gain

2 n |dn () ,
> =M > }——”' —at)y; (0> (40)
T n L‘E[)L i=1 a;)i([) an,|s(t)l)7'lu,(')
results in
VS—-%QTQ5<O. (4n

5. Construction of HRIV Method

In R-mode, RIV method is used reducing the
rule-intervals and, in I-mode, Integral Sliding
Mode FLC is applied to compensate for MAE
without the reduction of the rule-intervals. Such a
transition makes Integral Sliding Mode FLC and
RIV method play a complementary role for each
disadvantage. If the appropriate adaptation is not
performed by a excessive and fast reduction of the
rule-intervals, or the other reasons, R-mode is
changed into Imode. By the transition, RIV
method does not need to satisfy the condition that
all the elements of 8 converges to the same
value any more. Conversely, by the transition,
Integral Sliding Mode FLC has an advantage to



use the reduced rule-interval for designing the
SMC gain, which can alleviate the disadvantage
in DAFLC .

For the stability of HRIV method in DAFLC,
all the conditions in Section 3 and 4 are assumed
to be valid. Define the control input and the SMC
gain
(42)
43)

Hpy =up(el8 )+ Kpy sgn(s),
Kpy =(1-0)Kp; +8K pg,
where & is | for R-mode and 0 for I-mode,
Kp, and K, are defined as KD in (15) and
(40), respectively. Consider the same Lyapunov
function in RIV method. By redefining

Appy; =60p; Nppi = OMp;»  (44)

and applying the same adaptive law,
V< —EQTQE - bls{(KDH - ;;Mo,) ,QDL z::n hDHi‘

+1-8)wp) <0, (45)

is obtained.

6. Conclusions

Integral Sliding Mode FLC is presented to
compensate for the analytic bound of MAE, to
formulate the error bound., and to show the
additional
feedback gain. To reduce the large bound of MAE,
RIV method is combined with Integral Sliding

asymptotic  stability without the

Mode FLC, where it compensates for the new
uncertain parameters generated by RIV method
and alleviated by the learning rate and the RIV
laws. In the case of RIV method, over-contraction
problem can happen by the fast reduction of rule-
intervals and as times goes to infinity. To handle
the problem. HRIV method is developed, where
the disadvantages caused by Integral Sliding
Mode FLC and RIV method are reciprocally
complemented with two modes; .R-mode and I-
mode. '
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