• 제목/요약/키워드: Sliding distance

검색결과 268건 처리시간 0.025초

Guidance Law for Near Space Interceptor based on Block Backstepping Sliding Mode and Extended State Observer

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.163-172
    • /
    • 2014
  • This paper proposes a novel guidance law based on the block backstepping sliding mode control and extended state observer (ESO), which also takes into account the autopilot dynamic characteristics of the near space interceptor (NSI), and the impact angle constraint of attacking the maneuvering target. Based on the backstepping control approach, the target maneuvers and the parameter uncertainties of the autopilot are regarded as disturbances of the outer loop and inner loop, respectively. Then, the ESO is constructed to estimate the target acceleration and the inner loop disturbance, and the block backstepping sliding model guidance law is employed, based on the estimated disturbance value. Furthermore, in order to avoid the "explosion of complexity" problem, first-order low-pass filters are also introduced, to obtain differentiations of the virtual control variables. The stability of the closed-loop guidance system is also proven, based on the Lyapunov theory. Finally, simulation results demonstrate that the proposed guidance law can not only overcome the influence of the autopilot dynamic delay and target maneuvers, but also obtain a small miss distance.

미세조직 변화에 따른 AISI 52100 강의 미끄럼마멸 특성 (Sliding Wear Behavior of AISI 52100 Steel with Pearlitic and Bainitic Microstructures)

  • 윤나래;김용석
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.479-484
    • /
    • 2011
  • Dry sliding wear behavior of AISI 52100 steel that has a pearlite or bainite microstructure was characterized to explore the effect of microstructure on the wear of the steel. Isothermal heat treatments were employed to obtain the different microstructures. Pin-on-disk type wear tests of the steel disk were performed at loads of 25~125N in air against an alumina ball. Sliding speed and wear distance used were 0.1m/sec and 300m, respectively. Worn surfaces, wear debris and cross-sections of the worn surfaces were examined with SEM to investigate the wear mechanism of the steel. Hardness of the steel was also evaluated. Wear rate of the steel was correlated with the hardness and the microstructure. On the whole, wear resistance increased with an increase in hardness. However, the pearlite microstructure showed superior wear resistance as compared to the bainite microstructure with a similar hardness. The effect of the microstructure on the wear rate was attributed to the morphological differences of the carbide in the microstructure, which was found to have a significant effect on strain hardening during the wear.

에폭시 기지 나노복합재료의 마모 특성 (Wear Properties of Epoxy Matrix Nanocomposites)

  • 김재동;김형진;고성위;김영식
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.83-88
    • /
    • 2010
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the wear resistance according to the change of apply load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and the wear test results exhibited as following ; The epoxy matrix composites showed lower coefficient of friction compared to the neat epoxy through the whole sliding distance. As increasing the sliding velocity the epoxy matrix composites indicated lower coefficient of friction, whereas the neat epoxy showed higher coefficient of friction as increasing the sliding velocity. The specific friction work of both materials were increased with apply load. In case of the epoxy matrix composites, the running in periods of friction were reduced as increase in apply load. The epoxy matrix composites were improved the wear resistance by adding the nano silica particles remarkably. It is expected that the load carrying capacity of the epoxy matrix composites will be improved by increase of Pv factor.

탄소와 질소 함량에 따른 탄질소 복합첨가강의 내마멸 특성 변화 (Wear-characteristics variation of Fe-C-N alloy with changing content of carbon and nitrogen)

  • 박준기;이슬기;김성준;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.385-388
    • /
    • 2009
  • Dry-sliding-wear behavior of Fe-18Cr-l0Mn steel with various carbon and nitrogen contents was characterized, and the effect of carbon and nitrogen contents on the wear was investigated. Dry sliding wear tests of the steel were carried out at room temperature against an AISI 52100 bearing steel ball using a pin-on-disk wear tester. Applied wear loads were varied from 10 N to 100 N, and the sliding distance was fixed as 720 m. Worn surfaces and the wear debris of the steel were examined using an SEM to find out the wear mechanism. It was found that the Fe-18Cr-10Mn with both carbon and nitrogen exhibited superior wear resistance to the steel with only nitrogen. The wear resistance of the Fe-18Cr-10Mn-xC-yN alloy increased with the increase of the carbon content. The excellent wear resistance of the Fe-18Cr-10Mn-xC-yN alloy was explained by the increased strain-hardening capability with the interstitial atoms.

  • PDF

나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성 (Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy)

  • 황성완
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

중탄소 Boron강의 가스침질탄화처리에 의해 형성된 화합물층의 마모특성에 관한 연구 (A Study on the Wear Characteristics of Compound Layers Formed during Gaseous Nitrocarburizing in Medium Carbon Boron Steels)

  • 박기원;오도원;조효석;이해우;이준범;이상윤
    • 열처리공학회지
    • /
    • 제12권2호
    • /
    • pp.136-144
    • /
    • 1999
  • The study on the wear characteristics of compound layers formed during gaseous nitrocarburising in the medium carbon boron steels and the plain carbon steel has been carried out by using a pin-on-disc type wear test machine under the oil lubricating condition at room temperature and by varying applied loads, sliding speeds and wear distances. Values of friction coefficient measured at the sliding speed of 0.4m/sec under the oil lubricating condition have been shown to decrease considerably with increasing applied load and become gradually a constant value as load is increased to a higher value, showing that the transition load for friction coefficient appears at an applied load of 247.2N. The length and volume wear rates of compound layer have been revealed to relatively constantly increase, also showing that the wear life per unit thickness of compound layer turns out to be superior as porous layer has a denser and thinner appearance. As the sliding speed increases during wear test performed by varying sliding speed at a load of 63.2N under the oil lubricating condition for medium carbon boron steel nitrocarburised in gas atmosphere, the wear rate has been found to increase, the friction coefficient to decrease and the wear life per unit thickness of compound layer to decrease considerably.

  • PDF

탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석 (Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions)

  • 김명곤;권혁우;허하리;김용석
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

DETERMINATION OF TRANSIENT WEAR DISTANCE IN THE ADHESIVE WEAR OF A6061 ALUMINIUM ALLOY REINFORCED WITH ALUMINA PARTICLES

  • Yang, L.J.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.217-218
    • /
    • 2002
  • An integrated adhesive wear model was proposed to determine the transient wear and steady-state wear of aluminium alloy matrix composites. The transient wear volume was described by an exponential equation, while the steady-state wear was governed by a revised Archard equation, in which both the transient wear volume and transient sliding distance were excluded. A mathematical method was developed to determine both the transient distance and the net steady-state wear coefficient. Experimental wear tests were carried out on three types of commercial A6061 aluminum alloy matrix composites reinforced with 10%, 15% and 20% alumina particles. More accurate wear coefficient values were obtained with the proposed model. The average standard wear coefficient, as determined by the original Archard equation, was found to be about 51% higher.

  • PDF

비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어 (Variable structure control with fuzzy reaching law method for nonlinear systems)

  • 사공성대;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF