• Title/Summary/Keyword: Sliding Motion

Search Result 434, Processing Time 0.024 seconds

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

Effects of Corrosion Resistance Characteristics of Opponent Materials in relative Motion on Sliding Wear Behavior of Mild Carbon Steel (상대재 내식성이 철강재료의 미끄럼마모 특성에 미치는 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • This study investigates the effects of corrosion resistance characteristics of opponent materials in relative motion on the sliding wear behavior of mild carbon steel. Pin specimens made of mild carbon steel are tested at several sliding speeds against mating discs made of two types of alloyed steels, such as type D2 tool steel (STD11) and type 420 stainless steel (STS420J2), with different corrosion resistance characteristics in a pin-on-disc type sliding wear test machine. The results clearly show that the sliding wear behavior of mild carbon steel is influenced by the corrosion resistance characteristics of the mating disc materials at low sliding speeds. However, the sliding wear behavior at high sliding speeds is irrelevant to the characteristics because of the rising temperature. During the steady state wear period, the sliding wear rate of mild carbon steel against the type 420 stainless steel at a sliding speed of 0.5 m/s increases considerably unlike against the type D2 tool steel. This may be because the better corrosion resistance characteristics achieve a worse tribochemical reactivity. However, during the running-in wear period at low sliding speeds, the wear behavior of mild carbon steel is influenced by the microstructure after heat treatment of the mating disc materials rather than by their corrosion resistance characteristics.

The Effects of Lower Limb Training Using Sliding Rehabilitation Machine on the Foot Motion and Stability in Stroke Patients

  • Lee, Kwan-Sub;Kim, Kyoung;Lee, Na-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the effect of lower limb training using a sliding rehabilitation machine on the foot motion and stability in stroke patients. Methods: Thirty participants were allocated to two groups: Training group (n=15) and Control group (n=15). Subjects in the control group received physical therapy for 30 minutes, five times per week, and those in the training group received lower limb training using a sliding rehabilitation machine for 30 minutes, five times per week, with physical therapy for 30 minutes, five times per week, during a period of six weeks. Heel rotation, hallux stiffness, foot balance, metatarsal load, toe out angle, and subtalar joint flexibility were measured by RS-scan. Results: Significant improvement of the foot motion (hallux stiffness, meta load) and the foot stability (toe out angle, subtalar joint flexibility) was observed in the training group. Conclusion: This study demonstrated that lower limb training using a sliding rehabilitation machine is an effective intervention to improve the foot motion and stability.

Eigenstructure Assigned Sliding Mode Control for Uncertain System (불확실 시스템을 고유구조 지정 슬라이딩 모드 제어)

  • Chun, Kyung-Han;Kim, Ga-Gue;Jeon, Hea-Jin;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.799-805
    • /
    • 2001
  • In this paper, we propose eigenstructure assigned sliding mode control for mismatched uncertain system. Variable structure control has the sliding mode in which the system is robust against the uncertainty and the sliding motion depends upon the sliding surface. Therefore, the surface design is one of the important problems. Also in mismatched cases, the uncertainty may affect on the sliding motion and may cause unexpected instability of the system. Thus, that should be considered, too. For robust sliding mode against the mismatched uncertainty, we suggest the design method of the sliding surface using the eigenstructure assignment, define an index as the measure of the robustness which shows the size of affordable unstructured uncertainty, and present the computation method. And also we propose the controller which can ensure the sliding mode and prove the robust stability of the proposed controller by using Lyapunov method. Finally we show the appropriateness of the proposed scheme for the mismatched uncertainty via the example.

  • PDF

Planar Motion of a Rigid Part Being Striked (타격되는 강체 부품의 평면 거동)

  • 박상욱;한인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.787-792
    • /
    • 1996
  • The method of manipulation by striking a part and letting it slide until it comes to rest, has been very little studied. However, the manipulation method is not uncommon in our daily lives. We analyze the dynamic behavior of a rigid polygonal part being striked and sliding on a horizontal surface under the action of fiction. There are two parts in this problem; one is the impact problem, and the other is the sliding problem. We characterize the impact and sliding dynamics with friction for polygonal parts, and present the possibility of reverse calculation for motion planning of striking operations. Using a high speed video camera, the computer simulation results are experimentally verified.

  • PDF

A Motion Control of a Two Degree of Freedom Inverted Pendulum with Passive Joint using Discrete-time Sliding Observer Based VSS Controller (슬라이딩 관측기를 갖는 가변구조제어기에 의한 도립진자의 운동제어)

  • Suh, Yong-Seok;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.468-471
    • /
    • 1994
  • This paper presents the digital implementation of an optimal and robust VSS controller with sliding observer. Firstly, a discrete-time VSS control law which enables the system state to move into a sliding sector where the closed-loop system is stable is designed. Then optimal control theory is used to design an optimal sliding sector. Secondly, a sliding observer which provide robust state estimation against model-plant mismatches due to parameter uncertainties is designed for the sampled-data multivariable systems. Finally, modified sliding observer which effectively reduce chattering of state variables in state estimation was proposed. The proposed scheme was applied 10 a two degree of freedom inverted pendulum with passive joint to verify robust motion control. Computer simulation results confirm the viability of the proposed observer-based controller.

  • PDF

Sliding Response of Spent Fuel Storage Cask to Earthquake (사용후핵연료 저장용기의 지진시 활동거동)

  • 최인길;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.70-77
    • /
    • 1996
  • In this study, sliding response analysis of free standing structure such as multi-purpose nuclear spent fuel storage cask is peformed. The governing factors of sliding response are aspect ratio of structure and ground acceleration. The vertical acceleration component is very important factor in the sliding response of the structure. Based on the mathematical model, computer program is developed using direct forward integration method to predict the sliding response. Using the program, several parametric studies were made for sinusodial ground motion and for El Centre 1940 earthquake and Mexico 1973 earthquake. From the results, it is known that the frequency content and duration of strong motion affect the sliding of the structure.

  • PDF

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Formulation for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.293-308
    • /
    • 2006
  • This paper presents a complete and consistent formulation to study the seismic response of a free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is considered that the foundation of the system is subjected to both horizontal and vertical in plane excitation. The motion of the system is classified in eight different modes which are Rest (relative), Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the governing equations are derived, and transition conditions between different modes are also defined. This formulation is based on a number of fundamental assumptions which are 2D idealization for motion of the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in the system. The formulation presented in this paper can be used in its entirety or in part, and they are suitable for investigation of generalized response using suitable analytical, or conducting a time-history sensitivity analysis.

Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator (슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어)

  • 최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.