• 제목/요약/키워드: Sliding Mode Controller

검색결과 930건 처리시간 0.036초

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin;Keum, Jung-Hoon;Eunsup Sim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.92.1-92
    • /
    • 2001
  • Sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is taken for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.

  • PDF

Design of Reconfigurable Flight Controller using Sliding Mode Control - Actuator Fault

  • dong ho Shin;Kim, Youdan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.40.2-40
    • /
    • 2002
  • This paper presents the reconfigurable flight controller in the presence of jammed actuator fault using the adaptive sliding mode control scheme. It is developed under the assumption that the control surface fault cannot be detected and the positions of stuck control surfaces are unknown. It is well known that sliding mode controller shows good performance for the systems with various uncertainties. None-operating stuck actuator makes the system behave like bias which degrades the system performance and sometimes destabilizes the system. Therefore, the bias term generated by actuator faults has to be compensated by the control system. To the objective, we adopt the adaptive sliding mode cont...

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Design of Optimal Controller Using Discrete Sliding Mode

  • Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Nam Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • 제2권3호
    • /
    • pp.198-201
    • /
    • 2004
  • In this paper, the discrete optimal control is made to have the robust property of Sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is disappear in this method.

Robust Control of Induction motor using Fuzzy Sliding Adaptive Controller with Sliding Mode Torque Observer

  • 윤병도;류홍우;임익헌;김찬기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.420-425
    • /
    • 1996
  • In this paper a robust speed controller for an induction motor is proposed. The speed controller consists or a fuzzy sliding adaptive controller(FSAC) and a sliding mode torque observer(SMTO). FSAC removes the problem or oscillations caused by discontinuous inputs of the sliding mode controller. The controller also provides robust characteristics against parameter and sampling time variations. Although, however, the performance of FSAC is better than PI controller and fuzzy controller in robustness, it generates the problem of slow response time. To alleviate this problem, a compensator, which performs feedforward control using torque signals produced by SMTO, is added. The simulation and hardware implementation results show that the proposed system is robust to the load disturbance, parameter variations, and measurement noises.

  • PDF

3단 비간섭 슬라이딩모드 제어 (Three-Level Decoupled Sliding Mode Control)

  • ;장성동;신화범
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.467-472
    • /
    • 2000
  • A three-level decoupled sliding mode controller is developed to achieve asymptotic stability for a class of sixth-order nonlinear systems. The sixth-order system is decoupled into three subsystems according to the structure of the whole system. Each subsystem has a separate control target in the form of a sliding surface. The information of the third sliding surface is transferred to the second one through an intermediate variable and the information of the second sliding surface is transferred to the first one through another intermediate variable. Consequently, the controller designed on the basis of the first sliding surface can make three subsystems move toward their sliding surfaces, respectively. The three-level decoupled sliding mode controller is applied to the double-inverted pendulum problem where the zero stable states are required.

  • PDF

전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어 (Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

하이퍼볼릭 함수 기반의 퍼지 슬라이딩 모드 제어를 이용한 2바퀴 이동로봇의 경로 추종제어 (Trajectory Tracking Control for Two Wheeled Mobile Robot using Fuzzy Sliding Mode Control based Hyperbolic Function)

  • 임종욱;이상재;채창현
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, we propose a trajectory tracking controller for a two-wheeled mobile robot (WMR) with nonholonomic constraints using a fuzzy sliding-mode controller-based hyperbolic function. The proposed controller is composed of two separate controllers. The sliding-mode controller is used for attitude control of the WMR, and the fuzzy controller-based hyperbolic function is designed to adjust the reach time of the sliding-mode control. Simulation results on a linear and a circular trajectory show that the proposed controller improves the control performance. The proposed controller reduces the reach time by as much as 47% compared to the controller proposed by Xie et al.

비선형 웹 이송 시스템의 장력 제어 (Tension Control in a Nonlinear Web Transfer System)

  • 윤석찬
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.65-72
    • /
    • 2000
  • This paper presents the study of the tension control in a web transfer system. In this study the sliding mode controller is applied to a time-varying nonlinear mathematical model. The model was derived to consider the effects of changing the roll radius in tension variation during winding and unwinding. The uncertainty in modeling may be due to unmodelled dynamics, on variations in system model. Designed sliding mode controller made the system error always staying in the suggested surface from the beginning. Through this, system is maintained to be robust against a disturbance and uncertainty. To verify the designed controller has a good performance, various inputs such as desired velocity, step input, and trapezoidal input are applied. When the sliding mode controller was used, the system(the tension control) performance was improved comparing to the PID controller. The robustness of the controller with respect to an estimation error was verified through simulations.

  • PDF

정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어 (Sliding Mode Control for Linear System with Mismatched Uncertainties)

  • 성재봉;권성하;박승규;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.25-25
    • /
    • 2000
  • This paper presents a design method of sliding mode control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we define a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with only mismatched uncertainties using a form of linear matrix inequality (LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding mode controller that stabilizes the overall closed-loop system.

  • PDF