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Three—Level Decoupled Sliding Mode Control
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Abstract - A three-level decoupled sliding mode controller is developed to achieve asymptotic stability for a class of
sixth-order nonlinear systems. The sixth-order system is decoupled into three subsystems according to the structure of
the whole system. Each subsystem has a separate control target in the form of a sliding surface. The information of the
third sliding surface is transferred to the second one through an intermediate variable and the information of the second
sliding surface is transferred to the first one through another intermediate variable. Consequently, the controller designed
on the basis of the first sliding surface can make three subsystems move toward their sliding surfaces, respectively. The
three-level decoupled sliding mode controller is applied to the double-inverted pendulum problem where the zero stable

states are required.
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1. Introduction

The (SMC) is
method to control nonlinear and uncertain systems. It is a
robust control method which can be applied in the

model parameter
The SMC
control,

sliding mode controller a powerful

presence  of uncertainties and

disturbances. is derived from the variable

structure which has a variable high-speed
switching feedback path (for example, the gains in each
feedback path switch between two values according to
some switching rules) [1, 2]. The switching rules are
generated to drive the state trajectory of nonlinear plant
onto a user-chosen surface in the state space and to
maintain it on this surface for all subsequent time. This
surface is called a sliding surface because if the state
trajectory is above or below the surface, a feedback path
The plant

dynamics restricted to the sliding surface represents the

has one or a different gain, respectively.

controlled systems behavior. By proper design of the
sliding surface, different control goals such as stabilization,
tracking, regulation, and the like, can be obtained. Some
practical implementation of SMC can be found in [3-5].
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In general, the SMC design breaks down into two
phases. The first phase is to design a sliding surface so
that the plant state restricted to the surface may have
is to design a
switched control that will drive the plant state to the

desired dynamics. The second phase
sliding surface and maintain it on this surface. In most
cases, a Lyapunov approach is used to characterize the
second design phase [1-6].

Recently, a two-level decoupled SMC model has been
proposed for stabilizing a certain class of fourth-order
nonlinear system such as the inverted pendulum [7]. The
two-level decoupled SMC can attain good result but it
cannot stabilize all the state variables of systems higher
than fourth-order like a double-inverted pendulum.

In this paper, a three-level decoupled SMC is developed
to achieve asymptotic stability for a class of sixth-order
nonlinear systems and it is applied to the double-inverted
stable states are
that all the
controlled states can achieve asymptotic stability.

pendulum problem where the zero

required. The simulation result shows

2. Sliding Mode Control
Consider the n-th order nonlinear system such as

2" =, £, 2T+ B £ 2T utd(D)
y =x
where x=(x),%,, %) T =(x, %, x" ") TeR" is the
u is the

state vector, f and & are nonlinear functions,
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control input, and d(# is external disturbance. The
disturbance is assumed to have upper bound D; that is,
|dDI<D for al ¢=0. The -control

determine a feedback control #= u(x) such that the state

objective is to

x of the closed-loop system will follow the desired state

(n—l)) T.

xg=(xg4 Xz, %3 that is, the state error

e= x—xa.:(e, é,...,e("_l))T (2)

should converge to zero, where e=x—x,; In general, a
sliding surface is defined by

s(e) = ce 3)

where c¢=1[c), ¢y, ***, Cu—1,1] in which ¢;'s are real and
all roots of polynomial A(p)=p" '+ cu_ip" i+t
are in the open left half-plane where p is a Laplace

operator.
Consider a Lyapunov function such as

_ 1l
V = 7S (4)

Then, the plant trajectory will attract toward the sliding

surface within finite time and remain on it if V is
negative definite. Also, once the trajectory remains on the

surface, the state error e(f) will converge to zero.

Therefore, the control « should satisfy that

s 1l.d 2

v 2 4t s° < 0. (5)
Because u is designed on the basis of a second-order
system for simplicity of the problem, we will only
consider, in this paper, a second-order nonlinear system
given by

0l = x(8)
2() = Ao + x)u + 4 (6)
Wy = x (P

where the desired state x4=0. From (2) and (3), the

sliding surface can be defined as

s = cx; + . (7

Then, the dynamic behavior of (6) without disturbance is

xl] + axy = 0 8

and (5) will have the form such that
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; ld 2
1%4 9 dz; s '
S(C1x1 + xg) 9

I

slewx, + Ax) + Hx)u + d(D].

It can be easily shown from (9) that if « has the
following form, V will be negative:

u = u— K-sgn(sb(x)), K > D/|b(x) (10
where
= .W (1)
1 if >0
sgn(¢) = 0 if ¢ =0. (12)
-1 if ¢ 0

The controller shown in (10) is discontinuous across the
sliding surface s and requires an infinitely fast switching
mechanism in ideal case. Since the implementation of the
control switching can not be perfect, we have to sample
the signals systems,
chattering. Chattering is undesirable because it may excite

in digital control which causes
unmodeled high-frequency plant dynamics resulting in
unforeseen instability. A way to eliminate chattering is to
introduce a thin boundary layer neighboring the sliding
surface such as [6], [11]

B(H) = {x Is(x, 0 < 0} (13)

where @ is called the thickness of the boundary layer.
The control # changes continuously within this boundary
layer. Replacing sgn(sb(x)) with sat(sb{(x)/®@) in (10)

yields that

u = u— K-sa(sb(x)/ D), o> 0 (14)
_ [sen(d) if I8l =2 1
sat#) = | é i ldl <1 (15

In the contents followed, the control # in (14) will be
used as the main controller for the three-level decoupled

SMC.
3. Design of Three-level Decoupled SMC

The SMC in (14) can be applied to the second-order
nonlinear systems in the form of (6) but cannot force all
the state variables to zero for the higher-order systems
like fourth-order or sixth-order systems such as [7]

e = (16)
2% fAx) + b(x)u + dlD




where f{x) and b/{x) are nonlinear functions, d{# is

external disturbance, and 7=1,---, N. The state vector x
has an appropriate dimension and the disturbance is

N=2, (16) becomes fourth-order system like an inverted

assumed to be bounded as

pendulum and becomes sixth-order system such as a
double-inverted pendulum if N=3.

Lo and Kuo have proposed a two-level decoupled SMC
[7). Applying it to the fourth-order nonlinear system in
the form of (16), it is shown that the two-level decoupled
SMC can make the state variable asymptotically zero.
the two-level controller fails to stabilize the
state variables at the origin when it is applied to the

However,

sixth-order nonlinear system.

Considering the sixth-order nonlinear system given in
(16), we can decouple it into three subsystems A, B, C in
the form of (6) where A contains x;, x,, B contains x3,
x4, and C contains x5, xg Hence, three sliding surfaces

can be defined as

Si = C&gio] T Xy (17
where 7=1,2,3. Then, three control laws can be
separately chosen according to (17) as

wi=u;— K, saf(s;b(x)] @), K.>D,J1b{x)] (18)

i = RS /) (19)
where :¢=1,2,3. Intuitively, when any #; in (18) is

(16),
asymptotically approach to zero but the other two sliding

adopted as u in the corresponding s; will
surfaces will not. In other words, such an SMC can only
control one sliding surface of the three. To solve this
problem, we develop a three-level decoupled SMC, which
can make all the sliding surfaces converge to zero.

The main idea of the three-level decoupled SMC system

model is stated as follows. Through a transferring
mechanism, the information of subsystem C is first
reflected to B and then the information of B is also

reflected to A. In this way, the subsystem A will contain
the information of both B and C. It is therefore expected
that all the subsystems can be controlled by designing one

SMC on the basis of A. An intermediate variable w is

used for transferring the information of sliding surface s,
to $; and another variable 2z is used for transferring the
information of s, to s,. This mechanism is to incorporate
w, 2z into Sy S, respectively, where w and 2z are a

function of s3 and $,, respectively. Therefore, the sliding
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surface s, is modified to take the form c¢y(x5— w)+ x4
and s; is modified to take the form ¢;(x,— z)+x,. Thus
the control target of subsystem C, s3=0, is embedded to
sy and the target of B, s;=0, is embedded to s,. All the

subsystems are controlled simultaneously.
From the above, the three-level decoupled SMC can be
written as follows:

u=uy= u— K, - sa(s,6,(x)/ @), K> Dy/1bi(x)] (20)

~ _ —cax — LX)

u = '—W—_,

s = calx; — 2) + 2, (21
2 = sal(sy/D,) * z,, (22)
s; = ofxs — w) + x4 (23)
w = sat(s;/D,) - w,, (24)
S3 = C3x5 +  xg, (25)

where 2z, (0<2,{1) and w, (0<w,<1) denote the upper
@, and @,

layer of s, and s,

bounds of abs( z) and abs( w), respectively,
are the thickness of boundary
respectively, and sat( ) is the same as (15). It is noted
that z and w are decaying oscillation signals because z,
and w, are factors between 0 and 1. @, and @, are
adopted here to avoid chattering.

The control sequences are as follows. When s3%#0, this
information is transferred to s, through w, and then
transferred to s, through =z Therefore, a corresponding
control is generated to reduce s3 to zero. When s,%0,
this information is transferred to s; through 2z and a
control signal is generated to reduce s; to zero. When
s3—0, then wu—0, then x3—0, then s,—0, then 2z—0,
then x,—0, then s;—0 and the control objective can be
achieved. The structure of the three-level decoupled SMC

is shown in Fig. 1.

[ X —»

—»x] N u

1
L, [suc

Y

system

Fig. 1 Structure of three-level decoupled SMC
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4. Simulation Results

In this section, the three-level decoupled SMC is applied
to a balancing problem of the double-inverted pendulum
whose structure is illustrated in Fig. 2. Pole 1 is connected
to the cart and pole 2 is the one above pole 1. The
control objective is to keep pole 1 and 2 balanced while
the cart moves and stops at the original position, that is

6, 6.,
after some balancing time. The dynamic equations of the
double-inverted pendulum system are represented as

to say, make 0, #;, x, and x become zero

X = X
%, = fH+butd
xo= % (26)
x4y = frtbutd
9&5 = X
% = fitbutd
where
x,= 0, angle of pole 1 with respect to vertical axis,

Xg = 91: angular velocity of pole 1 with respect to
vertical axis,

x3= 0, angle of pole 2 with respect to vertical axis,

Xy= 92I angular velocity of pole 2 with respect to
vertical axis,
x5=x : position of the cart,
Xg= x : velocity of the cart,
and fy, fs, f3, by, by, and by are given in Appendix. In
order to demonstrate the external disturbance rejection
capability, a uniformly distributed disturbance is applied on
the system.
The three-level decoupled SMC is designed in the form
of (20)-(25) and the following system parameters are used

Fig. 2 Double inverted pendulum
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in the simulation:

L=1[m}, L,=1[m], m.=1lkgl,
my=1lkg), £=9.8[m/s*].

my= 1[kg],

The controller parameters are chosen as:

C1=10, Cz=5, 6‘3:0.5, K1=10, @1=5,
0,=5, 0,=5, z,=0.5, w,=0.5, 1d<0.0873.

The initial values are:

6]():30“ , 829:105 , 0.1():0, (9.20=0, J&():JC()ZO.

Comments:

1) K, is the hitting control gain whose sole purpose is

to make the sliding condition ( ss<0) viable. Therefore, the

value of K, should be large enough to overcome the
effect of external disturbance but a too large K, may
produce oscillation. We choose K;=10.

2) Because the thin boundary layer @ neighbors on the
sliding surface, we can arbitrarily adjust the steady-state
error by proper selection of @. However, a small @
might produce a boundary layer so thin that it risks
exciting high frequency dynamics. Here we select all the
@ equal to 5.

3) z, and w, are factors between 0 and 1, and they
decide the decaying oscillation signal speed. Small values

will increase the speed but may cause divergence.

2,= w,=0.5 are adopted here.

4) To avoid the situation where the cart never stops,
¢y must be properly chosen. When the cart moves toward
the origin, a larger ¢; makes s; change it's sign at a
position close to the origin and, accordingly, the force to
slow down the cart will be exerted at a position closed to
the origin. Nevertheless, the duration of the action may
not be long enough to reduce the speed of the cart to zero
as the cart passes through the origin. Also, the value of
¢; must not be too large, otherwise the cart will be
always oscillating around the origin. In this simulation,
¢;=0.5.

Figs. 3-5 show the simulation result of three-level
decoupled SMC system. Comparing to Figs. 6-8 which are
the simulation result of two-level decoupled SMC system
in (71, We can find that 6; and 6, move back to the
origin but the cart go away from the origin when applying
the two-level controller to the double-inverted pendulum
system. However, the three-level SMC can force all the
state variables of the double-inverted pendulum converge




to zero, ie. the poles and the cart are stabilized to the

equilibrium.
5. Conclusion
In this paper, a three-level decoupled SMC is developed

By decoupling the
whole system into three subsystems, each subsystem has

for sixth-order nonlinear systems.

a separate control target expressed in terms of a sliding

surface. Two intermediate variables w and 2z are

introduced to transfer two of the three control targets

0.5 : g : — g

8, 6, [rad]
<

0 10 20 30 40
time [sec]

Fig. 3 Angle evolution of pole 1 and 2 with
three~leve! decoupled SMC

i H i

0 10 20 30 40

time [sec]

Fig. 4 Position evolution of cant with three-level
decoupled SMC

time [sec]

Fig. 5 Control input of three-level decoupled SMC
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(converging the sliding surface to zero) to the other one.
Through this mechanism, the main SMC can generate a
control action to make all the three subsystems move
toward their corresponding sliding surfaces. The usefulness
of the proposed method is verified by applying it to a
double-inverted pendulum system. Compared to the
two-level SMC system, the three-level SMC succeeds in
stabilizing the position of the cart to origin. The weak
point of the three-level SMC system is that the stabilizing

time is a little long, which would need some future work.

time [sec]

Fig. 6 Angle evolution of pole 1 and 2 with
two-level decoupled SMC

100 b b

x [m]

50 |

0 R i i L "
0 5 10 15 20

time [sec]

Fig. 7 Position evolution of cart with two-level
decoupled SMC

30

time [sec]

Fig. 8 Control input of two-level decoupled SMC
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Appendix

System equation of double-inverted pendulum:

fi= f:,;l sin(xg—x1)+l%gsinx1— erly;c cos x;sinx,

fo= 27:1 sin(x3 — xy), f3=£mlcls-mxl

bl:'ép_sm(xa“x])— cosx, Ay cos x,sinx,
hmy Lm, Lm,

by= 271;1 sin(x3 — x), baszc-F /rlnlj sinx,

2 2
dzz( Lxs — gCOSXl) — a1212x4

Ay=

4
asinx,; axpsinx,
Ap=——— Ap=—"55—7"
z d4-m, 2 4 m,
l 2 l 2
A, = — ap(hxs — geosx)) + anlxy
2= A
2
_ 1 sin “x, _ 1 1
an= o, T =T, P
1 c 1 2
_ coslaz—xy)
ap=— m
i

4= apap—ah

where

5y, Iy length of pole 1 and pole 2, respectively,

m,, m;, My mass of the cart, polel, and pole 2,
respectively,

u : control force to move the cart,

g acceleration of gravity.
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