• 제목/요약/키워드: Slider Bearing

검색결과 96건 처리시간 0.023초

다공질 정압공기 베어링을 이용한 직진 테이블에 있어 주위환경이 움직임 정밀.정확도에 미치는 영향 (Influence of the environments on the movement precision of the guide table using externally pressurized porous air bearing)

  • 한응교;허석환;노병옥
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.721-729
    • /
    • 1988
  • 본 연구에서는 직진테이블 시작품을 통해 주위환경에 의한 영향 중 주위온도 에 따른 움직임 정밀 정확도의 변화 및 지지조건이 움직임 정밀.정확도에 미치는 영향 에 대해 실험 연구하였다.

축소기초모델개념을 이용한 공기윤활 슬라이더 베어링의 최적설계 (An Optimization of Air-Lubricated Slider Bearings Using the Reduced Basis Concept)

  • 윤상준;김동인;강태식;정태건;최동훈
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.343-348
    • /
    • 2003
  • In this study, optimum designs of the air-bearing surface (ABS) are achieved using the reduced basis concept which can effectively reduce the number of design variables without cutting down on the design space. Even though the optimization method is easier and more applicable to handle than the trial-and-error method, its efficiency is largely dependent on the number of the design variables. Hence, the reduced basis concept is applied, by which the desired design can be defined as a linear combination of basis designs. The simulation results show the effectiveness of the proposed approach by obtaining the optimum solutions of the sliders whose target flying heights are 25, 20, and 15nm.

베어링 윤활 필름층의 비뉴튼성 거동에 대한 수치적 해석 (Numerical Analysis of Non-Newtonian Behavior in the Fluid Film Layer of Bearing Lubrication)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.341-350
    • /
    • 2000
  • The study reported in this paper deals with the development for parametric investigation of the influence of the rheological properties of the lubricant in the thermohydrodynamic (THD) film conditions which occur in slider and journal bearings. A parametric investigation based on a Bingham model with a shear yield stress which best fit the experimental pressure is performed for predicting the thickness of the shear Bone in lubricating films with fixed geometry between the stationary and moving surfaces. The results suggest that the shear yield stress for the lubricating film is proportional to the pressure developed in the film within the range of the investigated cases and the shear zone thickness which is of the same order of magnitude as that obtained by the empirical formula is significantly smaller than the fluid film thickness in the lubrication zone.

로드/언로드 성능향상을 위한 서스팬션의 구조최적화 (Integrated Optimal Design for Suspension to Improve Load/Unload Performance)

  • 김기훈;손석호;박경수;윤상준;박노철;양현석;최동훈;박영필
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.130-137
    • /
    • 2006
  • The HDD(hard disk drive) using Load/unload(L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objects of L/UL are no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure

  • Ebrahimi, Saeed;Salahshoor, Esmaeil;Moradi, Shapour
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.691-702
    • /
    • 2017
  • Clearances are essential for the assemblage of mechanisms to allow the relative motion between the joined bodies. This clearance exists due to machining tolerances, wear, material deformations, and imperfections, and it can worsen the mechanism performance when the precision and smoothly-working are intended. Energy is a subject which is less paid attention in the area of clearance. The effect of the clearance on the energy of a flexible slider-crank mechanism is investigated in this paper. A clearance exists in the joint between the slider and the coupler. The contact force model is based on the Lankarani and Nikravesh model and the friction force is calculated using the modified Coulomb's friction law. The hysteresis damping which has been included in the contact force model dissipates energy in clearance joints. The other source for the energy loss is the friction between the journal and the bearing. Initial configuration and crank angular velocity are changed to see their effects on the energy of the system. Energy diagrams are plotted for different coefficients of friction to see its influence. Finally, considering the coupler as a flexible body, the effect of flexibility on the energy of the system is investigated.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

모델볼츠만 방정식을 이용한 초박막 개스베어링 기체유장 수치해석 (NUMERICAL ANALYSIS OF GAS FLOWS IN ULTRA-THIN FILM GAS BEARINGS USING A MODEL BOLTZMANN EQUATION)

  • 정찬홍
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.86-95
    • /
    • 2009
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in gas bearings. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for flows inside micro-channels of backward-facing step, forward-facing step, and slider bearings. The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle based methods and requires less computational effort.

EMDIOS를 이용한 Optical Flying Head의 형상 최적설계 (Optimum Design of Optical Flying Head Using EMDIOS)

  • 최동훈;윤상준
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.67-72
    • /
    • 2005
  • This study proposes a design methodology to determine the optimum configurations of the optical flying head (OFH) for near-field recording systems. Since the OFH requires stricter static and dynamic characteristics of slider air-bearings within an optical tilt tolerance over the entire recording band, an optimum design to keep the focusing and tracking ability stable is essential. The desired flying characteristics considered in this study are to minimize the variation in flying height between the SIL and the disk from a target value, satisfying the restriction of the minimum flying height, to keep the pitch and roll angles within an optical tilt tolerance, and to ensure a higher air-bearing stiffness. Simulation results demonstrate the effectiveness of the proposed design methodology by showing that the static and dynamic flying characteristics of the optimally designed OFH are enhanced in comparison with those of the initial. The gap between the SIL and the disk can be kept at less than 100 nm even if the optical tilt tolerance of the SIL is considered.

  • PDF

극저부상 HDI 개발을 위한 Head-Disk Impact 연구 (Investigation of Head-Disk Impact for Development of Ultra-Low Flying HDI)

  • 조언정;박노열
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.122-126
    • /
    • 2001
  • Magnetic hard disk drive is continually being pushed to reduce head-disk spacing for higher recording densities. The current minimum spacing between the air-bearing slider and disk has been reduced to under 15 nm. In this work, it was investigated if flying height could be lowered under the height of laser bumps. With the reduction of the spinning speed, the flying height was decreased under the height of laser bumps. When a head swept between landing zone and data zone, the head-disk impact was monitored using AE and friction signals. It is demonstrated that magnetic hard disk drive could be operated without tribological failures under the height of laser bumps.

  • PDF

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.