• Title/Summary/Keyword: Slag viscosity

Search Result 79, Processing Time 0.022 seconds

Effects of critical viscosity temperature and flux feeding ratio on the slag flow behavior on the wall of a coal gasifier (석탄 가스화시 회분의 임계점도온도 및 플럭스 비율 변화에 따른 벽면 슬래그 거동 특성 분석)

  • Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.21-24
    • /
    • 2014
  • In the entrained-flow coal gasifier, coal ash turns into a molten slag most of which deposits onto the wall to form liquid and solid layers. Critical viscosity refers to the viscosity at the interface of the two layers. The slag layers play an important role in protecting the wall from physical/chemical attack from the hot syngas and in continuously discharging the ash to the slag tap at the bottom of the gasifier. For coal with high ash melting point and slag viscosity, CaO-based flux is added to coal to lower the viscosity. This study evaulates the effect of critical viscosity temperature and ash/flux ratio on the slag behavior using numerical modelling in a commercial gasifier. The changes in the slag layer thickness, heat transfer rate, surface temperature and velocity profiles were analyzed to understand the underlying mechanism of slag flow and heat transfer.

  • PDF

Analysis of Slag Behavior near the Slag Tap in an Entrained Flow Coal Gasifier (분류층 석탄가스화기 하부 슬래그 탭 부근의 슬래그 거동 해석)

  • Chung, Jae-Hwa;Chi, Jun-Hwa;Lee, Joong-Won;Seo, Seok-Bin;Kim, Ki-Tae;Park, Ho-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.913-924
    • /
    • 2011
  • A steady-state analysis has been conducted to predict the behavior of the slag layer in the entrained-flow slagging coal gasifier. The analysis takes into consideration the composition dependent slag properties such as density, viscosity, heat capacity, thermal conductivity, and temperature of critical viscosity. The amount of added flux to the design coal and the variation of syngas temperature inside the gasifier have been adopted as calculation parameters. The predicted results are the local thickness of the molten and the solid slag layers, and the slag viscosity and the velocity distribution across the molten slag layer along the gasifier wall near the slag tap.

Effect of the imported bituminous coal and the domestic anthracite coal mixed with petroleum coke (석유코크스와 혼합된 국내무연탄과 수입유연탄 슬래그의 특성 규명)

  • Kim, Min-Kyung;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.230-233
    • /
    • 2008
  • The vanadium rich ash of petroleum coke can give a slagging problem during because of the high melting point of $V_2O_3$. For continuous removal of the slag, petroleum coke is often mixed with coal, and the viscosity of the mixed slag is an important property, determining the gasification temperature. The viscosities of the mixed slag from various mixing ratios of petroleum coke and a bituminous coal were investigated. When mixed with a crystalline coal slag, $T_{cv}$ was increased at a higher the coke content in the mixed feed. When the $V_2O_3$ concentration was greater than 4.5%, it was difficult to get accurate measurements of $T_{cv}$. The SEM/EDX analyses of the cooled slag revealed that the major crystalline phase was anorthite, and $T_{cv}$ should be related to the formation temperature of anorthite. The SEM/EDX analyses also showed that, at low concentrations of vanadium, part vanadium formed a crystalline phase with Al-Si-Ca-Fe, and the rest remained in the glassy phase, suggesting that vanadium existed as a slag component at the low viscosity region. At a high concentration, vanadium forms a phase with Ca, and the Ca-V phase was separated from the slag phase, and formed a layer above the slag. FeO in petroleum coke also played an important role determining viscosity: at high temperatures, increased FeO lowered the viscosity, but as it formed a spinel phase, the depletion of FeO in the slag resulted in a higher viscosity.

  • PDF

Effect of V2O3 and CaO Concentrations on the Viscosity of 5-Component Petcoke Slag (V2O3와 CaO의 농도에 따른 5-성분계 석유코크스 슬래그의 점도 변화)

  • Yang, Yoonjung;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.688-696
    • /
    • 2020
  • Petroleum coke (petcoke) is widely used, next to coal, as a gasification feedstock. In gasification processes, the viscosity of the ash and the formation of crystalline phases must be understood to ensure the continuous removal of slag. This study investigates the effect of CaO and V2O3 on petcoke slag viscosity. The viscosity of the molten slag was measured in the temperature range of 1100~1600 ℃ while varying the concentration of each component. The crystalline phases formed in a cooled slag were examined. The most slag samples tested in this study exhibited crystalline slag behavior. The increased CaO concentration resulted in a lower viscosity and a lower Tcv. The viscosity behavior changed from the glassy to crystalline slag and also showed a higher Tcv as the concentration of V2O3 increases. Most slag samples showed different crystalline phases from top to bottom. Anorthites and Ca-V phases were observed in the top and middle section, while the bottom section mainly showed V2O3 and anorthite. The vanadium in the ash forms Ca-V and V-Fe phases and also remains in molten slag. A low melting Ca-V phase can contribute to lowering the viscosity.

Rheological Properties of Cement Pastes Blended Finex-Slag Powder (파이넥스 슬래그 미분말을 혼합한 시멘트 페이스트의 유동특성)

  • Lee, Keun-Jae;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.657-661
    • /
    • 2009
  • In this study, rheological properties of cement pastes containing ground Finex-slag (4000, 6000, 7000 c$m^2$/g) were investigated bymini-flow test and coaxial cylinder viscometer. And also blast furnace slag(4000, 6000, 7000 c$m^2$/g) were used for comparison. According to the experimental results, Finex-slag and blast furnace slag showed very similar trend in the rheological properties of the cement pastes. The fluidity of cement pastes blended Finex-slag and blast furnace slag powder were improved by high replacement ratio. In the relationship of plastic viscosity and yield stress appeared the tendency of the proportion greatly. And in the relationship of plastic viscosity, yield stress and mini-flow appeared the tendency of the inverse proportion.

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags (결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향)

  • Kim, Yu-Na;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

Recovery of An, Ag, and Ni from PCB Wastes by CaF2-containing Slag (형우(螢右) 함유(含有) 슬래그 노이(盧理)를 통한 PCB 스크랩으로부터 Au, Ag, Ni의 회수(回收)에 관한 연구(班究))

  • Park, Joo-Hyun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.58-64
    • /
    • 2011
  • Recovery of novel metals such as Au, Ag and Ni from wastes PCB was investigated by slag treatments. The CaO-$Al_2O_3$(-$SiO_2$) and CaO-$SiO_2$-$CaF_2$ slags were employed in the present study. The PCB/Cu ratio is recommended to be lower than unity. The use of CaO-$SiO_2$-$CaF_2$ slag provided the more higher yield of Au, Ag and Ni than the CaO-$Al_2O_3$(-$SiO_2$) slag did, which was mainly due to the lower melting point and the viscosity of $CaF_2$-containing slag. The terminal descending velocity of metal droplets in the slag phase increased with decreasing slag viscosity.

Viscosity Change of Al2O3-SiO2-CaO Slag System with Used Electronic Scrap (산화처리된 PCB 스크랩을 첨가한 Al2O3-SiO2-CaO 3성분계 슬래그의 점도)

  • Kwon, Eui-Hyuk;Han, Sin-Suk;Ji, Jae-Hong;Han, Jeong-Whan;You, Byung-Don;Kim, Byung-Soo;Lee, Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • In order to explore the possibility to extract precious metals from PCB(Printed Circuit Board) scrap by gravity separation, a high temperature melting process was adopted, from the recycling view point, to investigate the influence of viscosity on A1$_2$$O_3$-CaO$-SiO_2$ slag system composed of PCB scrap. For optimizing the pre-treatment process of PCB scrap, an experimental condition for the complete calcination and oxidation of organic materials in PCB scrap was established and a quantitative analysis of oxidized PCB scrap was also carrie out. It was found that 6 hours were enough for the complete oxidation of PCB scrap at 1273 K in an atmosphere condition. A slag, l5wt%$A1_2$$O_3$-45wt%CaO-40wt%SiO$_2$, was chosen as a basic slag composition which is determined based on the quantitative analysis of PCB scrap. Viscosities were measured in slag systems both made from pure fluxes and from PCB scrap with additional fluxes. Slag viscosities composed of pure fluxes were measured to be 5.29 poise and 30.52 poise at temperatures of 1773 and 1573 K, whereas that of PCB scrap with additional fluxes were 3.37 poise and 69.89 poise, respectively.

Viscosity of Coal Slags under Gasification Conditions (가스화 조건에서 탄종에 따른 석탄 슬래그 점도 거동)

  • 문인식;조철범;오명숙
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • In the entrained flow gasifiers, the slag viscosity is an important parameter determining the operation conditions. The slag viscosities of 9 coals, which were selected and tested as possible gasification feedstock in Korea, were measured in a high temperature slag viscometer under gasification conditions. The type and size of crystalline phases that were known to affect the slag viscosity behavior were also determined. The slag samples were obtained from the IEA dry-feed gasifier. The slags of Alaska Usibelli, Curragh, Kideco, Adaro, Denisovsky, Baiduri and Drayton coals showed the behavior of crystalline slags, while those of Datong and Cypurus glassy slags. When a recommended minimum operating temperature was arbitrarily defined as $T_{1000}$poise/+$50^{\circ}C$ for glassy slags and $T_{cv}$ +$50^{\circ}C$ for crystalline slags, the Drayton slag required the lowest temperature, while Denisovsky slag required the highest. All the slags contained C $r_2$ $O_3$ from the refractory. The crystalline slags with $T_{cv}$ at around 132$0^{\circ}C$ contained large anorthites as the major crystalline phase that would have caused the rapid inrease in viscosity. Denisovsky slag contained many pores which were formed by $O_2$ from F $e_{x}$O reduction..