DOI QR코드

DOI QR Code

Recovery of An, Ag, and Ni from PCB Wastes by CaF2-containing Slag

형우(螢右) 함유(含有) 슬래그 노이(盧理)를 통한 PCB 스크랩으로부터 Au, Ag, Ni의 회수(回收)에 관한 연구(班究)

  • Park, Joo-Hyun (School of Materials Science and Engineering, University of Ulsan)
  • 박주현 (울산대학교 첨단소재공학부)
  • Received : 2011.06.16
  • Accepted : 2011.07.18
  • Published : 2011.08.31

Abstract

Recovery of novel metals such as Au, Ag and Ni from wastes PCB was investigated by slag treatments. The CaO-$Al_2O_3$(-$SiO_2$) and CaO-$SiO_2$-$CaF_2$ slags were employed in the present study. The PCB/Cu ratio is recommended to be lower than unity. The use of CaO-$SiO_2$-$CaF_2$ slag provided the more higher yield of Au, Ag and Ni than the CaO-$Al_2O_3$(-$SiO_2$) slag did, which was mainly due to the lower melting point and the viscosity of $CaF_2$-containing slag. The terminal descending velocity of metal droplets in the slag phase increased with decreasing slag viscosity.

고온에서 PCB 처리를 통한 Au, Ag와 같은 귀금속뿐 아니라 Ni과 같은 주요 회유금속을 회수하기 위한 기초연구로서 CaO-$Al_2O_3$(-$SiO_2$) 및 CaO-$SiO_2$-$CaF_2$ 슬래그를 이용하여 Au, Ag, Ni의 회수거동올 관찰하였다. 슬래그 투입 없이 PCB만으로 용융실험을 수행한 결과 PCB는 거의 용융되지 않았으며, 이로부터 유도전류를 이용한 용융을 촉진할 뿐 아니라 유가금속의 회수를 위해서는 Cu와 갇은 적절한 base metal이 필요함을 확인하였다. 본 연구결과, PCB/Cu ratio는 1 이하가 바람직할 것으로 생각된다. CaO-$Al_2O_3$(-$SiO_2$) 및 CaO-$SiO_2$-$CaF_2$ 슬래그를 투입한 결과, $CaF_2$를 함유하는 fluorosilicate계 슬래그가 calcium aluminate계 슬래그보다 융점과 점도가 낮게 제어되었으며, 이로부터 Au, Ag, Ni의 높은 분배비를 얻을 수 있었다. 점도가 낮은 $CaF_2$ 함유 슬래그 적용 시 높은 유가금속 회수율은 슬래그 내에서 각 금속입자의 등속침강속도가 상승하기 때문인 것으로 평가되었다.

Keywords

References

  1. B.C. Ban, C.M. Kim, Y.I. Kim, and D.S. Kim, 2002: Recovery of precious metals from waste PCB and auto catalyst using arc furnace, J. Kor. Inst. Resources Recycling 11(6), pp. 3-11.
  2. B.S. Kim, J.C. Lee, S.P. Seo, Y.K. Park and H.Y. Sohn, 2004: A process for extracting precious metals from spent printed circuit boards and automobile catalysts, JOM 56(12), pp. 55-58. https://doi.org/10.1007/s11837-004-0237-9
  3. B.S. Kim, 2005: Process development for recycling valuable metals from obsolete electric and electronic scrap, Trends in Met. & Mater. Eng. 18(4), pp. 21-29.
  4. B.C. Ban, J.Y. Song, J.Y. Lim, S.K. Wang, K.G. An and D.S. Kim, 2005: Studies on the reuse of waste printed circuit board as an additive for cement mortar, J. Environ. Sci. Health, Part A 40(3), 645-656. https://doi.org/10.1081/ESE-200046618
  5. D.Y. Shin, S.D. Lee, H.B. Jeong, B.D. You, J.H. Han and J.K. Jung, 2008: Pyro-metallurgical treatment of used OA parts for the recovery of valuable metals, J. Kor. Inst. Resources Recycling 17(2), pp. 46-54.
  6. J.H. Oh, J.S. Kim, S.M. Moon, J.W. Min, 2010: Urban mine resources and metals recycling industries in Japan, J. Kor. Inst. Resources Recycling 19(6), pp. 11-26.
  7. K.C. Mills, 1995: Viscosity of molten slags, Slag Atlas, 2nd edition, Verlag Stahleisen GmbH, Dusseldorf, Germany, pp. 349-402.
  8. J.H. Park and D.J. Min, 2007: Discussion on "The estimation of the iso-viscosity lines in molten $CaF_2-CaO-SiO_2$ system", ISIJ Int. 47(9), pp. 1368-1369. https://doi.org/10.2355/isijinternational.47.1368
  9. D.R. Poirier and G.H. Geiger, 1994: Laminar flow and momentum equation, Transport Phenomena in Materials Processing, TMS, Warrendale, PA, pp. 39-75.
  10. T. Iida and R.I.L. Guthrie, 1993: Density, The Physical Properties of Liquid Metals, Oxford University Press, Oxford, pp. 47-77.