• Title/Summary/Keyword: Skin irritants

Search Result 17, Processing Time 0.022 seconds

Influences of Environmental Chemicals on Atopic Dermatitis

  • Kim, Kwangmi
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • Atopic dermatitis is a chronic inflammatory skin condition including severe pruritus, xerosis, visible eczematous skin lesions that mainly begin early in life. Atopic dermatitis exerts a profound impact on the quality of life of patients and their families. The estimated lifetime prevalence of atopic dermatitis has increased 2~3 fold during over the past 30 years, especially in urban areas in industrialized countries, emphasizing the importance of life-style and environment in the pathogenesis of atopic diseases. While the interplay of individual genetic predisposition and environmental factors contribute to the development of atopic dermatitis, the recent increase in the prevalence of atopic dermatitis might be attributed to increased exposure to various environmental factors rather than alterations in human genome. In recent decades, there has been an increasing exposure to chemicals from a variety of sources. In this study, the effects of various environmental chemicals we face in everyday life - air pollutants, contact allergens and skin irritants, ingredients in cosmetics and personal care products, and food additives - on the prevalence and severity of atopic dermatitis are reviewed.

Effect of Campsis grandiflora on Antioxidative Activity in UVB-irradiated Human Dermal Fibroblasts (사람 섬유아세포에서 UVB 조사에 대한 능소화 추출물의 항산화 효과)

  • Kim, Jin-Hwa;Lee, Bum-Chun;Zhang, Yong-He;Pyo, Hyeong-Bae
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2005
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmen tal facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Campsis grandiflora extract on the UVB-irradiated human dermal fibroblasts (HDFs). We tested free radical and superoxide scavenging effect in vitro. C. grandiflora extracts had potent radical scavenging effect by 82% at $100{\mu}g/ml$, respectively. For testing intracellular ROS scavenging activity the cultured HDFs were analyzed by increase in DCF fluorescence upon exposure to UVB 20 $MJ/cm^2$ after treatment of C.grandiflora extracts. The results showed that oxidation of CM-DCFDA was inhibited by C.grandiflora extracts effectively and C.grandiflora extracts has a potent free radical scavenging activity in UVB- irradiated HDFs. In ROS imaging using confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our results suggest that C.grandiflora can be effectively used for the prevention of UV-induced adverse skin reactions such as radical production, and skin cell damage.

Use of Cultured Bioartificial Skins as in vitro Models for Cutaneous Toxicity Testing (생인공피부를 이용한 독성 반응 시험)

  • Yang, Eun-Kyung;Yoon, Hee-Hoon;Park, Jung-Keug;Park, Soo-Nam;Ko, Kang-Il;Kim, Ki-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.17-40
    • /
    • 2000
  • Cytotoxicity assays using artificial skins have been proposed as in vitro alternatives to minimize animal ocular and dermal irritation testing. Accordingly, the responses of artificial skins to the well-characterized chemical irritants toluene, glutaraldehyde, and sodium lauryl sulfate (SLS), and the nonirritant polyethylene glycol were studied. The evaluation of the irritating and non-irritating test chemicals was also compared with the responses observed in human dermal fibroblasts and human epidermal keratinocytes grown in a monolayer culture. The responses monitored included an MTT mitochondrial functionality assay. In order to better understand the local mechanisms involved in skin damage and repair, the production of several mitogenic proinflammatory mediators, interleukin-l$\alpha$, 12-HETE, and 15-HETE, was also investigated. Dose-dependent increases in the levels of かIn and the HETEs were observed in the underlying medium of the skin systems exposed to the two skin irritants, glutaraldehyde and SLS. The results of the present study show that both human artificial skins can be used as efficient in vitro testing models for the evaluation of skin toxicity and for screening contact skin irritancy.

  • PDF

Instrumental Assessments of Sub-clinical Skin Reactions induced by Cosmetic Ingredients (화장품 원료에 의해 유도되는 미세 피부반응에 대한 기기적 평가 연구)

  • An, Sang-Mi;Lee, Mi-Young;Baek, Ji-Hwoon;Ham, Hye-In;Boo, Yong-Chool;Koh, Jae-Sook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • The safety of cosmetics or cosmetic ingredients on human skin is generally evaluated by visual assessment but some early subtle skin changes may not be noticed by the naked eyes. Thus, the present study was conducted to detect skin reactions induced by mildly irritating cosmetic ingredients by using a laser Doppler perfusion imager (LDPI) method that measures blood flow, a $Vapometer^{(R)}$ that measure strans epidermal water loss (TEWL), and a spectrophotometer that measures the skin color as the erythema values ($a^*$). Visual assessment showed that all tested oils and humectants except propylene glycol belong to the low skin irritation ranges (grades 0+ to 2.9+) while all tested surfactants and propylene glycol belong to the moderate-to strong-skin irritation ranges (grades 3+ to 5+). Among three instrumental methods, TEWL assessment appeared to be more sensitive than spectrophotometric or LDPI method and suitable for the detection of subtle skin response invisible to the naked eye (grades 0+ to 2.9+). Skin reactions of grade 3+ to 5+ could be detected by all three instrumental methods. In conclusion, the current study suggested that the sub-clinical skin reactions due to mild irritants contained in cosmetics can be best assessed by TEWL measurements.

Reduction of Skin Irritation by the Control of Skin Permeation of Methyl Paraben

  • Seong-Hoon Jeong;Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • The skin permeation study has two meanings in cosmetics. One is how to promote the skin permeation of active meterials for improving their bioavailabilities and the other is how to decrease it of irritants for reducing their skin side effects. In this study, we selected methyl paraben, one of the preservatives, as a model irritant and tried to reduce the skin irritation by the decrease of skin permeation. Furthermore, the relationship between skin permeation and skin primary irritation was discussed. For in vitro skin permeation experiments, Franz type diffusion cells and the excised skin of female hairless mouse from 8 weeks old were used. The donor compartment was charged with oil only or O/W emulsion containing 0.3% MP. We selected 19 oils, including esters, triglycerides, plant oils, hydrocarbons, and alchols, which are broadly used in cosmetics. We evaluated with female guinea pig. The skin permeahility of MP from the oils showed following order: ester oils > triglycerides > plant oils > hydrocarbons > alcohols. We considered that this result was based on the different effect of each oil on the barrier function of stratum corneum. In O/W emulsion containing each oil, the skin permeability of MP decreased as the oil/water partition coefficient of MP increased. The skin primary irritation increased as the skin permeability of MP increased. In conclusion, we suggest that the skin irritation could be reduced by the decrease of skin permeability of MP, which may be obtained by the good selection of oils in cosmetic preparations.

  • PDF

The Application of Nanoliposome Composed of Ceramide as an Anti-irritant in Cosmetics (세라마이드를 구성성분으로 하는 나노리포좀의 응용 - 화장품에서의 자극완화제)

  • Jo Byoung Kee;Ahn Gi Woong;Shin Bong Soo;Jeong Ji Hean;Park Hae-Ryong;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.267-272
    • /
    • 2005
  • The objective of this study is to suggest the potentialities of nanoliposome composed of ceramide as an anti-irritant against various irritants used in cosmetics. Ceramides are major structural components of the epidermal permeability barrier, which is known to play an essential part in human physiology by not only preventing the loss of water from the body but also protecting the body from external physical, chemical, and microbial insults. According to the results, better effects on reinforcement of skin barrier function and anti-irritation were obtained with nanoliposome composed of ceramide than with dispersed ceramide. And, we performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse to evaluate the influence of nanoliposome composed of ceramide on the skin penetration of lactic acid in formulations. From the results, we found that the anti-irritation effects of nanoliposome containing ceramide were due to reduced penetration rate of irritants. Conclusively, we could develop a new anti-irritation system and apply this nanoliposome composed of ceramide to the final cosmetic products successfully.

Changes in transepidermal water loss after medication of Gagampalmultang to 104 patients with atopic dermatitis (가감팔물탕(加減八物湯)을 투여한 아토피 피부염 환자 104명의 경표피수분손실율 변화)

  • Ahn Sang-Hoon;Lee Jong-Hoon
    • Herbal Formula Science
    • /
    • v.11 no.1
    • /
    • pp.197-204
    • /
    • 2003
  • The skin is a barrier between the living organism and its environment, and this barrier function resides in the stratum corneum. The main function of the stratum corneum is to serve as a barrier preventing the penetration of irritants and transepidermal water loss(TEWL). The rate of transepidermal water loss is a convenient parameter for expressing barrier function. Impaired barrier function was manifested by a greatly increased rate of transepidermal water loss. In atopic dermatitis the rate of transepidermal water lossis greatly increased transepidermal water loss. Medication of Gagampalmultang restored to normal the abnormally high rates of transepidermal water loss in the 104 patients with atopic dermatitis. It specifically plays an important role in regulating barrier function.

  • PDF

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.

Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract (향나무추출물의 광손상으로부터 피부세포 보호와 자극완화 효과에 대한 연구)

  • 김진화;박성민;심관섭;이범천;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmental facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Juniperus chinensis xylem extract on the UV and SLS-induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. We found that Juniperus chinensis xylem extracts had potent radical scavenging effect by 98% at 100 $\mu\textrm{g}$/mL. Fluorometric assays of the proteolytic activities of matrix metalloproteinase-l(MMP-1, collagenase) were performed using fluorescent collagen substrates. UV A induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25 $\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. In this test Juniperus chinensis decreased expression of interleukin 6 about 30%. Expression of prostaglandin E$_2$, (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay (EIA) using PGE$_2$ monoclonal antibody. At the concentrations of 5-50 $\mu\textrm{g}$/mL of the extracts, the production of PGE$_2$ by HaCaT keratinocytes (24 hours after 10 mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p〈0.05). The viability of cultured HaCaT keratinocytes was significantly reduced at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB irradiation, but the presence of these extracts improved cell viability comparing to control after UVB irradiation. We also investigated the protective effect of this extract in sodium lauryl sulfate (SLS)-induced irritant skin reactions from 24 hour exposure. Twice a day application of the extract for reducing local inflammation in human skin was done. Irritant reactions were assessed by various aspects of skin condition, that is, erythema (skin color reflectance) and transepidermal water loss (TEWL). After 5 days the extract was found to reduce SLS-induced skin erythema and improve barrier regeneration when compared to untreated symmetrical test site. In conclusion, our results suggest that Juniperus chinensis can be effectively used for the prevention of UV and SLS-induced adverse skin reactions such as radical production, inflammation and skin cell damage.

Clinical Studies on the Anti-Irritation Effects of Mung Bean (Phaseolus aureus) Extract in Cosmetics (녹두추출물의 자극완화 효과에 관한 임상 연구)

  • 안기웅;강태원;정지헌;조병기
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • The aim of this study is to assess the anti-irritation activities of mung bean (Phaseolus aureus) extract against various irritants used in cosmetics. For its antidotal activity, mung bean has been used as a medicinal or cosmetic material since ancient times. However, there have been few reports describing the biological activities of these beans and no comprehensive surveys of the constituents. We obtained an ethanolic extract of mung bean and isolated the major constituents, such as vitexin and isovitexin. And we previously reported that the mung bean extract containing vitexin and isovitexin had excellent antioxidant and anti-inflammatory activities. To investigate the mechanisms of anti-inflammatory activity of mung bean extract, we examined the inhibitory effects on histamine release from rat peritoneal mast cells and lipoxygenase activity. Mung bean extract inhibited histamine release in a concentration dependent manner but showed no inhibitory activity in the 5-lipoxygenase assay. And, clinical studies were conducted to evaluate the anti-irritation effects of mung bean extract against various irritants used in cosmetics such as lactic acid, retinol, and preservatives. When 2.0% of mung bean extract was applied to cosmetic formulae containing each of irritants, it revealed considerable anti-irritation efficacy. Our results of the human patch test with 20 volunteers showed that this extract reduced skin irritations caused by 5.0% lactic acid, 4000 IU retinol, and 1.0% preservative mixture by about 60%, 30%, and 50% respectively. The stinging potential test for assessing subjective irritation also showed that the extract reduced the unpleasant sensations by about 50∼30%. Finally, we performed a double-blind usage test with 30 subjects to compare formulae containing mung bean extract with placebo. From the results of questionnaires for 4 weeks of use, we confirmed the excellent anti-irritation effect of mung bean extract. Conclusively, we could discover new material that had anti-irritation effects and apply this mung bean extract to the final cosmetic products successfully.