• Title/Summary/Keyword: Skin corrosion

Search Result 19, Processing Time 0.023 seconds

Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model

  • Choi, Jonghye;Kim, Hyejin;Choi, Jinhee;Oh, Seung Min;Park, Jeonggue;Park, Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.4.1-4.10
    • /
    • 2014
  • Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models ($KeraSkin^{TM}$) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-$1{\alpha}$ release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are 'non corrosive' and 'non-irritant' to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test.

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.

Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

  • Liu, Yonggang;Cui, Lei
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.125-129
    • /
    • 2014
  • Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area.

Guidelines for Manufacturing and Application of Organoids: Skin

  • Seunghee Lee;Yeri Alice Rim;Juryun Kim;Su Hyon Lee;Hye Jung Park;Hyounwoo Kim;Sun-Ju Ahn;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.182-193
    • /
    • 2024
  • To address the limitations of animal testing, scientific research is increasingly focused on developing alternative testing methods. These alternative tests utilize cells or tissues derived from animals or humans for in vitro testing, as well as artificial tissues and organoids. In western countries, animal testing for cosmetics has been banned, leading to the adoption of artificial skin for toxicity evaluation, such as skin corrosion and irritation assessments. Standard guidelines for skin organoid technology becomes necessary to ensure consistent data and evaluation in replacing animal testing with in vitro methods. These guidelines encompass aspects such as cell sourcing, culture techniques, quality requirements and assessment, storage and preservation, and organoid-based assays.

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.

A Review on the Classification of Skin Toxicity Hazards Due to Skin Contact with Chemical Substances (화학물질 피부접촉에 의한 피부독성 유해성 분류에 관한 고찰)

  • Kwon, Buhyun;Jo, Jihoon;Lee, Dohee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.175-189
    • /
    • 2018
  • Objectives: In this study, we analyze statistics on industrial accidents caused by chemical skin contact and provide skin toxicity hazard information on the related domestic system and circulation volumes. Methods and Results: We analyzed occupational fatalities and skin diseases caused by chemical leaks and contact from 2007 to 2016(10 years) and surveyed data on occupational skin diseases using the 2014 work environment survey data. The NIOSH Skin Notation Profiles for 57 chemical substances, which are provided to prevent occupational skin diseases, were searched and hazard information on skin contact with chemical substances was classified. In order to identify skin toxicity information among domestically distributed and legally regulated substances and to investigate skin-toxic substances, MSDS basic data on 19,740 chemical substances provided on the homepage of Korea Occupational Safety & Health Agency were searched. Acute toxicity(dermal) category 1-4 substances totaled 1,020, and the number of chemical substances classified as category 1 and 2 substances were 135 and 137, respectively. In the chemical substances prescribed by the Ministry of Employment and Labor, 173 substances were classified into acute toxicity(dermal) categories 1-4, 58 of which correspond to category 1 or 2. Conclusions: Within the present range of industrial accidents, the proportion of skin diseases due to contact with chemicals is not high. However, there is always a risk of occupational skin diseases due to increasing chemicals and due to the use of new chemicals. It is hoped that this information will be used by workplace safety and health officials and health and safety experts to prevent acute toxity(dermal) due to chemical skin contact.

Evaluation of Relative Corrosion Rate depending on Local Location and Installation of Structural Member in Steel Water Gate (강재 수문의 부재 위치 및 설치 방향에 따른 상대 부식속도 평가)

  • Ha, Min-Gyun;Jeong, Young Soo;Park, Seung hun;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.16-24
    • /
    • 2019
  • The corrosion amounts of steel structures can be different depending on their installation condition and height. Thus, their corrosion maintenance should be considered depending on installation conditions of local structural members. In this study, an atmospheric exposure test was conducted to evaluate the corrosion amount and the corrosion rate depending on the installation condition and height of a steel water gate using monitoring steel plates and corrosion environment measuring sensors. The mean corrosion depth was evaluated using the weight loss method and the galvanic corrosion current was measured by corrosion environment measuring sensors. Local corrosion rate of local structural member in steel water gate was estimated using measured mean corrosion depths and galvanic corrosion currents. From this measurement results, the corrosion damage in horizontal member of the cross beam was highly evaluated than those of other structural member as skin plate, etc. The relative difference in the corrosion rate of a local structural member could be highly affected by local corrosion environments of steel water gate members. Therefore, an appropriate maintenance method should be considered for local corrosion damages of local structural members determined by local corrosion environments of a steel water gate.

Composite Skin and Corner Plate for Protection of Concrete Structure (콘크리트 구조물 보호용 복합소재 피복판 및 모서리 보호공)

  • 이성우;이선구;조남훈;신경재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.199-202
    • /
    • 2000
  • Compared with existing construction materials, ACM(Advanced Composites Material) possesses many advantage such as light-weight, high-strength, corrosion resistant properties, etc. In this study, utilizing those advantages of ACM, composite skin and comer plate for protection of concrete port structure are developed. Detailed procedure fur analysis, design and fabrication along with site installation for demonstration project are described. It is also demonstrated that pultrusion process for comer plate and VARTM process for composite skin are promising fabrication methods fer future civil infrastructure application.

  • PDF

A Study on the Application of Soilcrete Cement for Improvement of marine Clay (해성점토지반 개량을 위한 소일크리트 고화재의 적용성에 관한 연구)

  • 천병식;김진춘
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.72-77
    • /
    • 2000
  • In this paper, the effect of ground improvement and the countermeasure for the increase of strength in soft ground (wasted fill, marine clay) was studied through utilization of Soilcrete Cement as a material of ground improvement. Soil samples were obtained from $\bigcirc$$\bigcirc$$\bigcirc$ sanitary landfill to assess the applicability of the clay liner using Soilcrete Cement. Several laboratory tests were performed with the samples and skin corrosion tests of steel pipe covered with Soilcrete Cement were performed. As a result, Soilcrete Cement is considered to be applicable to the construction site and to be effective for the prevention of the corrosion of the steel pipe.

  • PDF

Assessment of Skin Toxicity Using Skin Equivalents Containing Cervi cornus Colla (녹각교 함유 인공피부를 이용한 피부독성도의 검사)

  • Kim, Jandi;Li, Hailan;Jeong, Hyo-Soon;Yun, Hye-Young;Baek, Kwang Jin;Kwon, Nyoun Soo;Choi, Hye-Ryung;Park, Kyoung-Chan;Kim, Dong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • To substitute animal test, skin equivalents (SEs) have been developed for skin irritation and corrosion test. Recently, we have developed new SEs containing Cervi cornus Colla (CCC). In the present study, we used the SEs for cutaneous cytotoxicity test. Sodium dodecylsulfate (SDS) or sodium carbonate was applied to the SEs-, and the epidermal damage by H&E and immunohistochemical stains was evaluated. Our results showed that SDS or sodium carbonate affected the epidermal part of SEs containing CCC in a dose-dependent manner and decreased the expression of p63. It is concluded that SEs containing CCC could be used for an alternative model of animal test and would be greatly helpful in the development of in vitro irritation and corrosion test.