Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.6
/
pp.1053-1065
/
2020
With the recent development of hardware performance and artificial intelligence technology, sophisticated fake videos that are difficult to distinguish with the human's eye are increasing. Face synthesis technology using artificial intelligence is called Deepfake, and anyone with a little programming skill and deep learning knowledge can produce sophisticated fake videos using Deepfake. A number of indiscriminate fake videos has been increased significantly, which may lead to problems such as privacy violations, fake news and fraud. Therefore, it is necessary to detect fake video clips that cannot be discriminated by a human eyes. Thus, in this paper, we propose a deep-fake detection model applied with Bidirectional Convolution LSTM and Attention Module. Unlike LSTM, which considers only the forward sequential procedure, the model proposed in this paper uses the reverse order procedure. The Attention Module is used with a Convolutional neural network model to use the characteristics of each frame for extraction. Experiments have shown that the model proposed has 93.5% accuracy and AUC is up to 50% higher than the results of pre-existing studies.
Purpose: Inferior vena cava (IVC) collapse is related to hypovolemia. Sonography has been used to measure the IVC diameter, but there is variation depending on the skill of the operator and it is difficult to obtain accurate measurements in patients who have a large amount of intestinal gas or are obese. As a modality to obtain accurate measurements, we measured the diameters of the IVC and aorta on trauma computed tomography scans and investigated the correlation between the IVC to aorta ratio and the shock index in blunt trauma patients. Methods: We retrospectively analyzed the medical records of 588 trauma patients who were transferred to the regional trauma center (level 1) of Wonkang University Hospital from March 2020 to February 2021. We included trauma patients 18 years or older who met the trauma activation criteria and underwent trauma computed tomography scans with intravenous contrast within 40 minutes of admission. The shock index was calculated from vital signs before trauma computed tomography scan, and measurements of the anteroposterior diameter of the IVC (AP), the transverse diameter of the IVC (T), and aorta were made 10 mm above the right renal vein in the venous phase. Results: Overall, 271 patients were included in this study, of whom 150 had a shock index ≤0.7 and 121 had a shock index >0.7. The T to AP ratio and AP to aorta ratio were significantly different between groups. Cutoffs were identified for the T to AP ratio and AP to aorta ratio (2.37 and 0.62, respectively) that produced clinically useful sensitivity and specificity for predicting a shock index >0.7, demonstrating moderate accuracy (T to AP ratio: area under the curve, 0.71; sensitivity, 59%; specificity, 87% and AP to aorta ratio: area under the curve, 0.70; sensitivity, 55%; specificity, 91%). Conclusions: The T to AP ratio and AP to aorta ratio are useful for predicting hemorrhagic shock in trauma patients.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.246-246
/
2023
Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.
Seung-Beom Kang;Seung-Gyu Kim;Sae-Yong Park;Tae-ho Im
Journal of Internet Computing and Services
/
v.25
no.1
/
pp.17-27
/
2024
Overfishing, climate change, and competitive fishing have led to a continuous decline in fishery production. To address these issues, the Total Allowable Catch (TAC) system has been established, which sets annual catch quotas for individual fish species and allows fishing only within those limits. As part of the TAC system, land-based investigators measure the length and height of fish species at auction markets to calculate the weight and TAC depletion. However, the accuracy of the acquired data varies depending on the skill level of the land-based investigators, and the labor-intensive nature of the work makes it unsustainable. To address these issues, this paper proposes a fish species recognition and length measurement system that automatically measures the length, height, and weight of eight TAC-managed fish species using the camera of a smart pad that can measure the distance to the water surface. This system can help to automate the current labor-intensive work, minimize data loss, and facilitate the establishment of the TAC system.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.801-807
/
2024
Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.
Transcranial Doppler (TCD) ultrasound is a crucial non-invasive tool for assessing cerebral blood flow and is widely used to diagnose and monitor cerebrovascular diseases. This paper reaffirms the importance of TCD, details examination methods and precautions, and provides a guide for practitioners. TCD evaluates the blood flow velocity to assess stenosis, occlusion, and hemodynamic changes. Distinguishing between increased blood flow volume and decreased vessel diameter based solely on velocity is challenging, necessitating a comprehensive approach to integrating clinical findings and hemodynamic changes. The reliability of TCD results depends on the skill of the examiner and requires standardized procedures and continuous training. Advances in automation and artificial intelligence promise enhanced accuracy and reliability. Future research should focus on validating and clinically applying these technologies. This paper is a review of the clinical significance of TCD, methods, and precautions, offering a valuable guide for practitioners and highlighting the potential benefits of ongoing advancements in TCD for the diagnosis and treatment of cerebrovascular diseases.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.30
no.5
/
pp.223-233
/
2018
The predictability of winter storm waves using KMA's operational wind forecasts has been studied to predict wind waves and swells in the East coast of Korea using SWAN. The nested model were employed along the East coast of Korea to simulate the wave transformation in the coastal area and wave dissipation term of whitecapping is optimized to improve swell prediction accuracy. In this study, KMA's operational meteorological models (RDAPS and LDAPS) are used as input wind fields. In order to evaluate model accuracy, we also simulate wind waves and swells using ECMWF reanalysis and KIOST WRF wind and they are compared with the KMA's operational wave model and the wave measurement data on the offshore and onshore stations. As a result, it has the lowest RMSE and the highest correlation coefficient in the onshore when the input wind fields are KMA's operational meteorological forecasts. In the offshore, all of the simulate results shows good agreements with similar error statistics. It means that it is very feasible to use SWAN model with the modified whitecapping factor and KMA's operational meteorological forecasts for predicting the wind waves and swells in the East coast of Korea.
The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.
The purpose of this study was to examine how a singing program using self-voice monitoring for children with cochlear implants (CI) influences on the intonation and the accuracy of pitch production. To verify and estimate the effectiveness, a program was conducted with participants of 7 prelingual CI users, whose aged between 4 years and 7 years. The program adopted three stages from the self-voice monitoring: Listen, Explore, and Reproduce (LER stage). All participants received 8 singing sessions over 8 weeks, including pre-test, intervention, and post-test. For the pre and post-test, participants' singing of an excerpt of a song "happy birthday" and speaking three assertive sentences and three interrogative sentences were recorded and analyzed in terms of the intonation slopes at the end of the sentences and the melodic contour. From the sentence speeches, we found that the intonation slopes of the interrogative sentences significantly improved as they showed similar patterns with that of the average normal hearing group. Also, in regard to singing, we observed that the melody contour had progressed, as well as the range of pitch production had extended. The positive result from the intervention indicates that the singing program was effective for children with CI to develop the intonation skill and accuracy of pitch production.
The Spatial Image contents of Geomorphology 3-D environment is focused by the requirement and importance in the fields such as, national land development plan, telecommunication facility management, railway construction, general construction engineering, Ubiquitous city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we tested of the railway facilities using laser surveying system, then we propose data a generation of spatial images for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation. As the results, We confirmed the solutions of varieties application for railway facilities management using 3-D spatial image contents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.