DOI QR코드

DOI QR Code

A Study on the Predictability of Eastern Winter Storm Waves Using Operational Wind Forecasts of KMA

기상청 현업 예보 바람자료를 이용한 동해안 동계 파랑 예측 재현도 연구

  • Do, Kideok (Dept. of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Kim, Jinah (Marine Disaster Research Center, Korea Institute of Ocean Science & Technology)
  • 도기덕 (한국해양대학교 해양과학기술융합학과) ;
  • 김진아 (한국해양과학기술원 해양재난.재해연구센터)
  • Received : 2018.08.30
  • Accepted : 2018.10.23
  • Published : 2018.10.31

Abstract

The predictability of winter storm waves using KMA's operational wind forecasts has been studied to predict wind waves and swells in the East coast of Korea using SWAN. The nested model were employed along the East coast of Korea to simulate the wave transformation in the coastal area and wave dissipation term of whitecapping is optimized to improve swell prediction accuracy. In this study, KMA's operational meteorological models (RDAPS and LDAPS) are used as input wind fields. In order to evaluate model accuracy, we also simulate wind waves and swells using ECMWF reanalysis and KIOST WRF wind and they are compared with the KMA's operational wave model and the wave measurement data on the offshore and onshore stations. As a result, it has the lowest RMSE and the highest correlation coefficient in the onshore when the input wind fields are KMA's operational meteorological forecasts. In the offshore, all of the simulate results shows good agreements with similar error statistics. It means that it is very feasible to use SWAN model with the modified whitecapping factor and KMA's operational meteorological forecasts for predicting the wind waves and swells in the East coast of Korea.

본 연구에서는 동해안의 너울성 고파랑 예측하기 위해 기상청 현업 예보 바람자료를 입력장으로 하여 파랑수치모델(SWAN)을 수립 및 최적화하고 동해안 동계 파랑의 예측 재현도를 평가하였다. 파랑 모델은 연안역에서의 파랑 변형을 모의하기 위해 네스팅 기법을 적용하였으며, 백파 에너지 소산항을 개선하여 너울성 파랑을 모의하였다. 수치실험을 위한 입력 바람장으로는 기상청 현업 기상예보모델인 RDAPS 및 LDAPS 자료를 사용하였다. 모의된 파랑에 대한 정확도 비교 평가를 위해 ECMWF 재분석 바람자료와 KIOST 운용해양시스템의 WRF 예측 바람자료를 이용한 파랑모델링 및 기상청 현업 파랑예보모델 결과와 연안 및 외해 4개 관측정점의 파랑 관측자료를 이용하였다. 기상청 현업 기상예보모델을 입력바람장으로 이용한 경우 연안에서는 유의파고, 첨두주기 및 평균 파향이 모두 가장 낮은 RMSE와 가장 높은 상관계수를 가졌으며, 외해에서는 모든 수치실험 결과가 관측자료와 전반적으로 잘 일치하였다. 백파항을 수정한 SWAN 모델과 기상청 현업 기상예보모델을 사용할 경우 급격하게 발생하는 고파랑 재현은 개선이 필요하지만 비교적 겨울철 폭풍파를 잘 재현하고 있다.

Keywords

References

  1. Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., Uppala, S. and Simmons, A. (2011). The ERA-Interim archive, version 2.0.
  2. Bonavita, M., Holm, E., Isaksen, L. and Fisher, M. (2016). The evolution of the ECMWF hybrid data assimilation system. Quarterly Journal of the Royal Meteorological Society, 142(694), 287-303. https://doi.org/10.1002/qj.2652
  3. Caires, S., Kim, J. and Groeneweg, J. (2018). Korean East Coast wave predictions by means of ensemble Kalman filter data assimilation. Ocean Dynamics, DOI:10.1007/s10236-018-1214-0.
  4. Chun, H., Kang, T.-S., Ahn, K., Jeong, W.M., Kim, T.-R. and Lee D.H. (2014). A study on the statistical characteristics and numerical hindcasts of storm waves in East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 26(2), 81-95 (in Korean). https://doi.org/10.9765/KSCOE.2014.26.2.81
  5. Eum, H.-S., Kang, T.-S., Nam, S.-Y. and Jeong, W.-M. (2016). Wave modeling considering water level changes and currents effects. Journal of Korean Society of Coastal and Ocean Engineers, 28(6), 383-396 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.6.383
  6. Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to whitecapping. Boundary-Layer Meteorology, 6, 107-127. https://doi.org/10.1007/BF00232479
  7. Kang, T.-S., Park, J.-J. and Eum, H.-S. (2015). Coastal wave hindcasting modelling using ECMWF wind dataset. Journal of the Korean Society of Marine Environment and Safety, 21(5), 599-607 (in Korean). https://doi.org/10.7837/kosomes.2015.21.5.599
  8. Ko, D.H., Jeong, S.T., Cho, H.Y. and Seo, K.S. (2017). Distribution and trend analysis of the significant wave heights using KMA and ECMWF data sets in the coastal seas, Korea. Journal of Korean Society of Coastal and Ocean Engineers, 29(3), 129-138 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.3.129
  9. Lee, D.-Y. and Jun, K.-C. (2006). Estimation of design wave height for the waters around the Korean peninsula. Ocean Science Journal, 41(4), 245-254. https://doi.org/10.1007/BF03020628
  10. Oh, S.-H. and Jeong, W. (2014). Extensive monitoring and intensive analysis of extreme winter-season wave events in the Korean east coast. Journal of Coastal Research, 70, 296-301. https://doi.org/10.2112/SI70-050.1
  11. Park, K.-S., Heo, K.-Y., Jun, K., Kwon, J.I., Kim, J., Choi, J.-Y., Cho, H.-H., Choi, B.-J., Seo, S.-N. Kim, Y.H., Kim, S.-D., Yang, C.-S., Lee, J.-C., Kim, S.-I., Kim, S., Choi, J.-W. and Jeong, S.-H. (2015). Development of the operational oceanographic system of Korea. Ocean Science Journal, 50(2), 353-369. https://doi.org/10.1007/s12601-015-0033-1
  12. Rogers, W.E., Hwang, P.A. and Wang, D.W. (2003). Investigation of wave growth and decay in the SWAN model: three regional-scale applications. Journal of Physical Oceanography, 33(2), 366-389. https://doi.org/10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2
  13. Seo, S.-N. (2008). Digital 30sec Gridded Bathymetric Data of Korea Marginal Seas - KorBathy30s. Journal of Korean Society of Coastal and Ocean Engineers, 20(1), 110-120 (in Korean).
  14. Yuk, J.-H., Kim, K.O., Jung, K.T. and Choi, B.H. (2016). Swell prediction for the Korean coast. Journal of Coastal Research, 32(1), 131-141. https://doi.org/10.2112/JCOASTRES-D-14-00208.1
  15. Zijlema, M., van Vledder, G. Ph. and Holthuijsen, L.H. (2012). Bottom friction and wind drag for wave models. Coastal Engineering, 65, 19-26. https://doi.org/10.1016/j.coastaleng.2012.03.002