• Title/Summary/Keyword: East Sea

Search Result 3,268, Processing Time 0.031 seconds

Status of Naming the East Sea in International Scientific Journals (국제 학술지에 발표된 연구 논문에서 동해의 표기 현황)

  • Kang, Dong-Jin;Lim, Byung-Ho;Chang, So-Young;Kim, Yun-Bae;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.133-156
    • /
    • 2009
  • We have named the sea surrounded by the Korean Peninsula, Primorye of Russia, and Japanese Islands as the East Sea. Historically this region has been variously named the East Sea, Chosun Sea, and, more recently, Japan Sea and Sea of Japan. Since the scientific research papers can play important roles on the naming the sea, the status of naming the East Sea in international scientific journals was investigated. Among 472 papers in 46 international journals that we assessed, Japan Sea (or Sea of Japan) was used in 322 papers (68.2%), East Sea was used in 21 papers (4.4%), and parallel usage of East Sea and Japan Sea accounted for 27.3% (129 papers). In all scientific papers before the early 1980s, East Sea was not used. Since the first parallel usage of East Sea and Japan Sea in 1985, these designations has been increasingly used. After 2004, the parallel usage has replaced the single designation of Japan Sea.

Institutional definition instances and necessity of establishment about the geographical scope of the East Sea (동해 지리적 범위 사용 사례 및 정립 필요성)

  • KIM, Yun-Bae;KIM, Kuh
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1380-1394
    • /
    • 2015
  • This paper deals with the geographical scope of the East Sea introduced by major domestic institutions. The East Sea surrounded by South Korea, North Korea, Russia, Japan has a variety of marine resources, and is the very appropriate natural laboratory to study future global changes as a miniature ocean. However, there is a continuous conflict between Korea and Japan over the name of the East Sea because of the nature of international waters. So we need the active research achievements based on the exact geographic knowledge of the East Sea to promote the legitimacy of the East Sea in the international community. Nevertheless each domestic institution has a different way to define the southern border of the East Sea so that it showed a difference about linear distance of up to about 44 km. Also, they have defined the scope of East Sea not as the entire East Sea surrounded by South Korea, North Korea, Russia and Japan but as the jurisdiction of the Republic of Korea. It caused serious confusion about accurate statistical knowledge about East Sea such as area, volume, and mean water depth. Therefore, clear social consensus about the geographical scope of the East Sea would be required, there is also the need to institutionalize a legal order to spread it.

Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite (Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구)

  • Lee, Dong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

Nomenclature of the Seas Around the Korean Peninsula Derived From Analyses of Papers in Two Representative Korean Ocean and Fisheries Science Journals: Present Status and Future (국내 대표 해양·수산 과학논문 분석을 통한 우리나라 주변 바다 이름표기에 대한 제언)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.3
    • /
    • pp.125-151
    • /
    • 2018
  • We grouped the names attributed to the seas surrounding the Korean Peninsula in maps published in two major Korean ocean and fisheries science journals over the period from 1998 to 2017: the Journal of the Korean Society of Oceanography (The Sea) and the Korean Journal of Fisheries and Aquatic Science (KFAS). The names attributed to these seas in maps of journal paper broadly were classified into three groupings: (1) East Sea and Yellow Sea; (2) East Sea, Yellow Sea, and South Sea; or (3) East Sea, West Sea and South Sea. The name 'East Sea' was dominantly used for the waters between Korea and Japan. In contrast, the water between Korea and China has been mostly labelled as 'Yellow Sea' but sometimes labelled as 'West Sea'. The waters between the south coast of Korea and Kyushu, Japan were labelled as either 'Korea Strait' or 'South Sea'. This analysis on sea names in the maps of 'The Sea' and 'KFAS' reveals that domestic researchers frequently mix geographical and international names when referring to the waters surrounding the Korean Peninsula. These inconsistencies provide the motivation for the development of a basic unifying guideline for naming the seas surrounding the Korean Peninsula. With respect to this, we recommend the use of separate names for the marginal seas between continental landmasses and/or islands versus for the coastal waters surrounding Korea. For the marginal seas, the internationally recognized names are recommended to be used: East Sea; Yellow Sea; Korea Strait; and East China Sea. While for coastal seas, including Korea's territorial sea, the following geographical nomenclature is suggested to differentiate them from the marginal sea names: Coastal Sea off the East Coast of Korea (or the East Korea Coastal Zone), Coastal Sea off the South Coast of Korea (or the South Coastal Zone of Korea), and Coastal Sea off the West Coast of Korea (or the West Korea Coastal Zone). Further, for small or specific study areas, the local region names, district names, the sea names and the undersea feature names can be used on the maps.

Spatial Variation of the Polar Front in relation to the Tsushima Warm Current in the East Sea (동해에서 쓰시마난류의 변동과 관련한 극전선의 공간적 변화)

  • 이충일;조규대;최용규
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.943-948
    • /
    • 2003
  • Variation of the polar front in the East Sea is studied using temperature and dissolved oxygen data obtained from Japan Meteorological Agency from 1972 to 1999. Variation of the polar front in the East Sea has a close relation to the variation of the Tsushima Warm Current (TWC). When the TWC spreads widely in the East Sea, polar front moves northward. The spatial variation of the polar front is greater in the southwestern area of the East Sea and the northern area of Tsugaru Strait where the variation of the TWC's distribution area is greater than those in others of the East Sea. Hence, in the southeastern area of the East Sea, that is, between near Noto peninsula and Tsugaru Strait, the spatial variation of the polar front is not so wide as in the southwestern area because the flow of TWC is stable.

Study on the Acoustic Behaviour Pattern of Fish Shool and Species Identification 1. Shoal Behaviour pattern of anchovy (Engraulis japonicus) in Korean waters and Species Identification Test. (어군의 음향학적 형태 및 분포특성과 어종식별에 관한 연구 1.한국 연근해 멸치어군의 형태 및 분포특성과 종식별 실험)

  • 김장근
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.52-61
    • /
    • 1998
  • We studied behaviour pattern of anchovy (Engraulis japonicus) shoal by a method of shoal echo integration and tested species identification by a method of artificial neural network using the acoustic data collected in the East China Sea in March 1994 and in the southern coastal waters of the East Sea of Korea in March 1995. Between areas, frequency distribution of 10 shoal descriptors was different, which showed characteristics of shoal behaviour in size, bathymetric position and acoustic strength. The range and mean of shoal size distribution in length and height was wider and bigger in the southern coastal waters of the East Sea than in the East China Sea. Relative shoal size of China Sea. Fractal dimension of shoal was almost same in both areas. Mean volume reverbration index of shoal was 3 dB higher in the southern coastal waters of the East Sea than in the East China Sea. The depth layer of shoal distribution was related to bottom depth in the southern coastal waters of the East Sea, while it was between near surface and central layer in the East China Sea. Principal component analysis of shoal descriptors showed the correlation between shoal size and acoustic strength which was higher in the southern coastal waters of the East Sea, than in the East China Sea. Correlation was also found among the bathymetric positions of shoal to some degree higher in the southern coastal waters of the East Sea than in the East China Sea. The anchovy shoal of two areas was identified by artificial neural network. The contribution factor index (Cio) of the shoal descriptors between two areas were almost identical feature. The shoal volume reverberation index (Rv) was showed the highest contribution to the species identification, while shoal length and shoal height showed relatively high negative contribution to the species identification.

  • PDF

Variations in species composition of fishes caught by trawl survey in the northwestern East Sea of Russian EEZ and southwestern East Sea of Korean EEZ (러시아측 동해 북서부 해역과 한국측 동해 남서부 해역 트롤 조사에 어획된 어류의 종조성 및 양적변동)

  • SOHN, Myoung Ho;YOON, Sang Chul;LEE, Sung Il;YOON, Byung Sun;CHA, Hyung Kee;KIM, Jong Bin;Kalchugin, Pavel;Solomatov, Sergey
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.355-369
    • /
    • 2015
  • To examine species composition, abundance and biomass of fishes in the northwestern East Sea of Russian EEZ, trawl survey were conducted at 31 sampling stations from 2006 to 2008. Also, trawl survey were conducted at 21 sampling stations in the southwestern East Sea of Korean EEZ from 2006 to 2008. A total of 67 fishes were collected in the northwestern East Sea of Russian EEZ, a total of 39 fishes were collected in the southwestern East Sea of Korean EEZ. Among them, a total of 53 fishes were collected in the northwestern East Sea of Russian EEZ only, and a total of 25 fishes were collected in the southwestern East Sea of Korean EEZ only. Mean abundance per area which caught by trawl survey in the northwestern East Sea ranged from a high of $116,478inds./km^2$ in 2008 to a low of $19,737inds./km^2$ in 2006. And mean abundance per area in the southwestern East Sea ranged from a high of $89,129inds./km^2$ in 2006 to a low of $8,234inds./km^2$ in 2008. Mean biomass per area which caught by trawl survey in the northwestern East Sea ranged from a high of $11,333kg/km^2$ in 2008 to a low of $2,439kg/km^2$ in 2006. And mean biomass per area in the southwestern East Sea ranged from a high of $6,273kg/km^2$ in 2006 to a low of $1,062 kg/km^2$ in 2008. Cluster analysis, based on a Bray-Curtis similarity matrix of fourth root transformed data of number of species and individuals per area, showed division into three different groups by depth in the northwestern and southwestern East Sea.

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

Maturity and Spawning of Lycodes tanakae in the Coastal Waters of the Middle East Sea (동해 중부연안 벌레문치(Lycodes tanakae)의 성숙과 산란)

  • Shon, Myong Ho;Yoon, Byoung Sun;Park, Jeong-Ho;Choi, Young Min;Lee, Jae Bong;Lee, Hae Won;Cha, Hyung Kee;Yang, Jae Hyeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.255-263
    • /
    • 2014
  • We investigated the reproductive characteristics of Lycodes tanakae in the coastal waters of the middle East Sea to elucidate the species' population structure. We investigated Lycodes tanakae maturation and spawning based on samples collected by Danish seine and gill nets from January 2012 to December 2013. We analyzed monthly changes in maturity stage, gonadosomatic index (GSI), egg diameter, fecundity, and total length at 50% group maturity. The spawning period was December to February, while fecundity ranged from 1,677 eggs at 57.3 cm (total length;TL) to 6,445 eggs at 75.7 cm. The relationship between TL and fecundity (F) was $F_e=6E-05TL^{3.127}$ ($R^2$ = 0.516), and F increased with increasing TL. We estimated the TL at 50% group maturity as 60.4 cm for females and 59.8 cm for males. This study is the first report of Lycodes tanakae reproductive characteristics in the coastal waters of the middle East Sea.

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF