• Title/Summary/Keyword: Skeletal muscle atrophy

Search Result 88, Processing Time 0.024 seconds

Idiopathic Polymyositis in a Young Mature Alaskan malamute (젊은 성숙 알라스칸 말라뮤트에서 특발성 다발성근염 증례)

  • Lee, Jae-Il;Hong, Sung-Hyeok;Son, Hwa-Young;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.244-246
    • /
    • 2007
  • Clinical and histopathologic features of idopathic polymyositis in twenty-month-old Alaskan malamute dog are described. The clinical signs were progressive exercise intolerance with acute exacerbation of weakness, muscle atrophy, synchronous pelvic limb gait, short stiff steps and tip-toeing as like walking on eggshells. Physical and clinical examination revealed no evidence of neurologic, skeletal and secondary muscular disorders associated with other diseases. Therefore muscle biopsy was performed at the most severe muscle atrophy lesions to confirm by histopathology. Histopathologic findings documented mononuclear cell infiltration and necrosis of muscle fiber and it was diagnosed as idiopathic polymyositis. Initial treatment was focused on pain relief. Prednisone at immunosuppressive dose (2 mg/kg) was administered orally twice daily. After 3 weeks of starting treatment, the patient showed improvement of gait, appetite, exercise as well as gradually return to normal state of hematologic and serum chemistry profiles.

Ziziphus jujuba mill. Extract Promotes Myogenic Differentiation of C2C12 Skeletal Muscle Cells

  • Gyeong Do Park;So Young Eun;Yoon-Hee Cheon;Chong Hyuk Chung;Chang Hoon Lee;Myeung Su Lee;Ju-Young Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Ziziphus jujuba Mill. (ZJM), a traditional folk medicine and functional food in South Korea and China, has been reported to having pharmacological activities against anti-cancer, anti-oxidative, and anti-obesity. However, the effect of ZJM related to myoblast differentiation has not been known. In this study, we investigated the effects and mechanism of ZJM on myogenic differentiation of C2C12 cells. ZJM promotes myogenic differentiation and elevates the formation of multinucleated myotube compared to the control group. ZJM significantly increased the mRNA and protein expression of MyHC1, myogenin and MyoD in dose- and time-dependent manner. Interestingly, ZJM significantly inhibited the mRNA and protein expression of protein degradation markers, atrogin-1 and MuRF-1, in dose- and time-dependent manner. Taken together, our data suggest that ZJM is a potential functional candidate for muscle growth and strength by promoting myogenic differentiation.

Safe Nuclear Factor-kappa B Inhibitor for Cachexia Management (악액질 완화를 위한 안전한 Nuclear Factor-kappa B 전사인자 제어 물질 발굴)

  • Park, Jeong-Soo
    • Journal of Korean Biological Nursing Science
    • /
    • v.14 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • Purpose: Cachexia is a complex metabolic syndrome associated with wasting of skeletal muscle which contributes to nearly one-third of all cancer deaths. Cachexia lowers the frequency of response to chemotherapy and radiation and ultimately can impact survival as well as quality of life during treatment. NF-kappa B is one of the most important molecular mediators of cachexia. In this study, therefore, possible candidates for inhibitors of NF-kappa B were searched. Methods: Amino acids that regulate cellular redox potential by adjusting the level of NAD/NADH ratio, such as aspartate, pyruvate, and isocitrate were selected. Results: Pyruvate effectively inhibited luciferase activity in TNF-stimulated 293T cells transfect with an NF-kB dependent luciferase reporter vector. Pyruvate also showed protective effect on muscle atrophy of differentiated C2C12 myocyte induced by TNF/IFN. Conclusion: We might be able to develop the nutritional management strategy for cancer cachexia patients with pyruvate supplementation.

Effect of Heat-Killed Enterococcus faecalis, EF-2001 on C2C12 Myoblast Damage Induced by Oxidative Stress and Muscle Volume Decreased by Sciatic Denervation in C57BL/6 Mice (산화스트레스에 의해 유도된 C2C12 근세포 손상과, 신경절제에 의해 근감소가 유도된 C57BL/6 마우스에서 열처리 사균체 엔테로코커스 패칼리스 EF-2001의 효과)

  • Chang, Sang-Jin;Lee, Myung-Hun;Kim, Wan-Joong;Chae, Yuri;Iwasa, Masahiro;Han, Kwon-Il;Kim, Wan-Jae;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.215-222
    • /
    • 2019
  • Muscle dysfunction may arise from skeletal muscle atrophy caused by aging, injury, oxidative stress, and hereditary disease. Powdered heat-killed Enterococcus faecalis (EF-2001) has anti-allergy, anti-inflammatory, and anti-tumor effects. However, its antioxidant and anti-atrophy effects are poorly characterized. In this study, we examined the effects of EF-2001 on muscle atrophy. To determine the protective effect of EF-2001 on oxidative stress, C2C12 myoblasts were treated with $H_2O_2$ to induce oxidative stress. This induced cell damage, which was reduced by treatment with EF-2001. The mechanism of EF-2001's effect was examined in response to oxidative stress. Treatment with EF-2001 reversed the expression of HSP70 and SOD1 proteins. Also, mRNA levels of Atrogin-1/MAFbx and MuRF1 increased under oxidative stress conditions but decreased following EF-2001 treatment. To evaluate muscle volume, two and three dimensional models of the muscles were analyzed using micro-CT. As expected, muscle volume decreased after sciatic denervation and recovered after oral administration of EF-2001. Therefore, EF-2001 is a candidate for the treatment of muscular atrophy, and future discovery of the additional effects of EF-2001 may yield further applications as a functional food with useful activities in various fields.

Effects of Different Types of Dietary Fat on Muscle Atrophy According to Muscle Fiber Types and PPAR${\delta}$ Expression in Hindlimb-Immobilized Rats (지방의 종류가 다른 식이의 섭취가 하지고정 흰 쥐의 근 섬유별 근 위축과 PPAR${\delta}$ 활성에 미치는 영향)

  • Lee, Ho-Uk;Park, Mi-Na;Lee, Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.355-365
    • /
    • 2011
  • This study investigated how dietary fat affects muscle atrophy and lipid metabolism in various muscles during hindlimb immobilization in rats. Twenty-four male Sprague?Dawley rats had their left hindlimb immobilized and were divided into four groups by dietary fat content and composition. The contralateral hindlimb (control) was compared with the immobilized limb in all dietary groups. Rats (n = 6/group) were fed a 4% corn oil diet (CO), 2.6% corn oil + 1.4% fish oil diet (FO), 30% corn oil diet (HCO), or a 30% beef tallow diet (HBT)after their hind limbs were immobilized for 10 days. Data were collected for the gastrocnemius, plantaris and soleus muscles. Muscle atrophy was induced significantly after 10 days of hindlimb immobilization, resulting in significantly decreased muscle mass and total muscle protein content. The protein levels of peroxisome proliferator activated receptor ${\delta}$ (PPAR${\delta}$) in the plantaris, gastrocnemius, and soleus increased following hindlimb immobilization irrespective of dietary fat intake. Interestingly, the PPAR${\delta}$ mRNA level in the plantaris decreased significantly in all groups and that in the FO group was lower than that in the other groups. The soleus PPAR${\delta}$ mRNA level decreased significantly following hindlimb immobilization in the FO group only. Muscle carnitine palmitoyl transferase 1 (mCPT1) mRNA level was not affected by hindlimb immobilization. However, the mCPT1 mRNA level in the FO group was significantly lower in the plantaris but higher in the soleus than that in the other groups. The pyruvate dehydrogenase kinase 4 (PDK4) mRNA level in the plantaris decreased significantly, whereas that in the soleus increased significantly following hindlimb immobilization. The plantaris, but not soleus, PDK4 mRNA level was significantly higher in the FO group than that in the CO group. The increased PPAR${\delta}$ protein level following hindlimb immobilization may have suppressed triglyceride accumulation in muscles and different types of dietary fat may have differentially affected muscle atrophy according to muscle type. Our results suggest that ${\omega}$-3 polyunsaturated fatty acids may suppress muscle atrophy and lipid accumulation by positively affecting the expression level and activity of PPAR${\delta}$ and PPAR${\delta}$-related enzymes, which are supposed to play an important role in muscle lipid metabolism.

Physical Examination of the Elbow (주관절의 이학적 검사)

  • 김풍택;경희수;전인호
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2003.11a
    • /
    • pp.51-56
    • /
    • 2003
  • The trained examiner can gain considerable information from visual inspections of the elbow joint, Because much of the joint is subcutaneous, any appreciable alteration in the skeletal anatomy often is detectable. Gross soft tissue swelling or muscle atrophy is also early observed. Inspection and palpation of the medial and lateral epicondyles and the tip of the otecranon from an equilateral triangle with the elbow is flexed. Normally, the arc of flexion extension, although variable, ranges from about O to 140 degrees plus or minus 10 degrees. The posterolateral rotatory instability(PLRI) of the elbow is most common pattern of elbow instability. The lateral collateral ligament complex also includes a narrow but stout band of ligamentous tissue blending with the distal and proterior fibers of the capsule to insert distally on the crista supinatoris of the ulna. This is the lateral ulnar collateral ligament(LUCL). A clinical elbow pivot shift test confirms the PLRI. There are also two active apprehension signs.

  • PDF

The Cytokine-mediated Link Between Depression and Cachexia in Cancer Patients (암환자의 우울증과 카켁시아 간 시토카인 매개 연결)

  • Lim, Woo Taek
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.3
    • /
    • pp.44-56
    • /
    • 2019
  • Despite the advances in medical technology, there are limited therapeutic interventions for cancer. Currently, the main goal of treatment is to remove a tumor completely. However, recent studies have shown that mortality is highly influenced by symptoms such as depression and cachexia, not solely by cancer itself. Depression is caused by psychological stress, and cachexia involves extreme weight loss with skeletal muscle atrophy, which are widely observed in patients with cancer. Although those two appear completely different from each other, they have a common etiology: cytokines. The production of cytokines can lead to depression and cachexia, and it contributes greatly to the increase in mortality rate. A better understanding of depression and cachexia in patients with cancer will help establish efficient treatment strategies.

Effects of Intensive Weight Bearing Treadmill Training and Electrical Stimulation on Skeletal Muscle Properties in Hindlimb Suspended Rats (흰 쥐의 뒷다리 현수 후 집중 체중부하 트레드밀 훈련과 전기자극이 골격근 특성에 미치는 효과)

  • Ahn, Duck-Hyun;Cho, Sang-Hyun;Yi, Chung-Hwi;Kang, Ho-Seok;Kwon, Hyuk-Cheol;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.9 no.1
    • /
    • pp.17-42
    • /
    • 2002
  • The purpose of this study was to investigate the treatment effect of three interventions on the disuse atrophy of rat hindlimb after two weeks suspension. Forty-eight 11~12 weeks old female Sprague-Dawley white rats were divided into four intervention groups: 1) suspension only (S; n=10), 2) intensive weight bearing treadmill (IWBT; n=10), 3) electrical stimulation (ES; n=9), 4) 2)+3) (ES/IWBT; n=9). Another 10 rats received no intervention or hindlimb suspension and served as controls (C). After the interventions, 1) the cross-sectional area (CSA), 2) the ratio of white muscle fiber composition (WMFC), 3) isometric tetanic tension (ITT), and 4) muscle weights (MWs) were measured from the four calf muscle specimens. The results were as follows: 1. In all intervention groups, the CSAs of medial and lateral gastrocnemius (MG LG), soleus (SOL), and flexor digitorum superficialis (FDS) decreased when compared to the control (C) group (p<.05). The CSA increased in FDS and LG for the IWBT group, in SOL for the ES/IWBT group compared to the S only group (p<.05). 2. The ratios of WMFC in MG, LG, SOL, and FDS increased compared to the C group for all interventions (p<.05). The ratios of WMFC decreased in SOL and LG for the IWBT group, in SOL for the ES/IWBT group compared to the S only group, and decreased in SOL for the ES/IWBT group compared to the IWBT group (p<.05). 3. The ITT in the MG, LG, SOL, and FDS decreased compared to the C group for all interventions (p<.05). The ITT increased in MG LG/FDS, SOL, and the whole calf muscles (WCMs) in the IWBT, ES and ES/IWBT groups compared to the S only group (p<.05). 4. The MWs in MG LG/FDS, SOL, WCMs decreased compared to the C group for all interventions (p<.05). The MWs increased in MG LG/FDS and WCMs for the IWBT group, in SOL for the ES group, and in SOL for the ES/IWBT group compared to the S only group (p<.05). 5. In atrophied muscles, the IWBT group showed the best recovery and the ES/IWBT and ES groups followed in decreasing order. The most susceptible muscle to disuse atrophy was the SOL. But conversely, it showed the best recovery in the ES/IWBT group. After two weeks of hindlimb suspension, the calf muscles of rats atrophied and their isometric tension decreased. These changes were best reversed by hindlimb-focused treadmill activity. The next best results were achieved by electrical stimulation combined with the treadmill followed by only electrical stimulation. These findings indicate that full weight bearing treadmill activity alone or in combination with electrical stimulation are effective treatments for non-weight bearing induced muscle atrophy. Further study of the effect of different intensities of electrical stimulation and variations in the duration period of full weight bearing treadmill activity on disuse atrophy is recommended.

  • PDF

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts (C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할)

  • Dal-Ah KIM;Kyoung Hye KONG;Hyun-Jeong CHO;Mi-Ran LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.184-194
    • /
    • 2023
  • In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

Exercise and Reactive Oxygen Species (운동과 활성산소)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1078-1085
    • /
    • 2017
  • Free radicals have long been considered damaging to various tissues. An excessive amount of reactive oxygen species (ROS) is known to have detrimental effects on the body and to be linked to numerous pathological conditions, such as cardiovascular disease, cancer, diabetes, and skeletal muscle atrophy. On the other hand, recent findings suggest that ROS is important for maintenance and development of cellular activity. Cells respond to increased oxidative stress by adaptive changes in the expression of a variety of proteins involved in the maintenance of cellular integrity. ROS is also essential for skeletal muscle function and metabolism. It is well known that physical exercise has many health benefits. Paradoxically, physical exercise also stimulates the production of ROS, which result in oxidative stress. Based on evidence amassed in the past decade, exercise itself may be considered an antioxidant because training increases the expression of antioxidant enzymes. In this review, we discuss the processes underlying the generation of ROS and its role in exercise-induced adaptation based on recent evidence. Furthermore, we discuss the possible role of NADPH oxidase in exercise-induced activation of insulin signaling and its effect on longevity.