• Title/Summary/Keyword: Size optimization design

Search Result 693, Processing Time 0.033 seconds

Plate Spring Design of a Micro Actuator Using Topology-parameter Optimization (위상-치수 최적화에 의한 마이크로 구동기 판 스프링의 설계)

  • Lee, Jong-Jin;Lee, Ho-Cheol;Yoo, Jeong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1246-1253
    • /
    • 2007
  • The recent issue of optical pickup actuators is to apply optical storage devices to mobile devices such as a cellular phone and PDA. It requires actuators to become smaller than conventional types. As the size becomes smaller, the magnetic force is reduced and the assembly of optical pickup actuators becomes more difficult. In addition, its dynamic characteristics are changed. In this paper, methods to improve magnetic forces and dynamic characteristics are suggested and the optimal result of the plate spring design is obtained. A diamond shape magnet and the fine pattern coil (FPC) are used to improve magnetic forces and damping elements are attached to decrease the peak magnitude of the mode instead of using structural damping, mostly for the purpose of improving the accuracy of the finite element simulation. To get more stable dynamic characteristics than conventional ones, a plate spring is applied to the optical pickup actuator and it is optimized with topology and parameter optimization to obtain the concept and the detail design, respectively.

Development of NASTRAN-based Optimization Framework for Vibration Optimum Design of Ship Structure. (선박 구조물의 진동 최적설계를 위한 NASTRAN 기반 최적화 프레임웍의 제안)

  • Kong, Y.M.;Choi, S.H.;Chae, S.I.;Song, J.D.;Kim, Y.H.;Yang, B.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1223-1231
    • /
    • 2005
  • Recently, the issue of ship nitration due to the large scale, high speed and lightweight of ship is emerging. For pleasantness in the cabin, shipbuilders are asked for strict vibration criteria and the degree of nitration level at a deckhouse became an important condition for taking order from customers. This study proposes a new optimization framework that is NASTRAN external call type optimization method (OptShip) and applies to an optimum design to decrease the nitration level of a deckhouse. The merits of this method are capable of using of global searching method and selecting of various objective function and design variables. The global optimization algorithms used here are random tabu search method which has fast converging speed and searches various size domains and genetic algorithm which searches multi-point solutions and has a good search capability in a complex space. By adapting OptShip to full-scale model, the validity of the suggested method was investigated.

Strut-and-tie model of deep beams with web openings - An optimization approach

  • Guan, Hong
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.361-379
    • /
    • 2005
  • Reinforced concrete deep beams have useful applications in tall buildings and foundations. Over the past two decades, numerous design models for deep beams were suggested. However even the latest design manuals still offer little insight into the design of deep beams in particular when complexities exist in the beams like web openings. A method commonly suggested for the design of deep beams with openings is the strut-and-tie model which is primarily used to represent the actual load transfer mechanism in a structural concrete member under ultimate load. In the present study, the development of the strut-and-tie model is transformed to the topology optimization problem of continuum structures. During the optimization process, both the stress and displacement constraints are satisfied and the performance of progressive topologies is evaluated. The influences on the strut-and-tie model in relation to different size, location and number of openings, as well as different loading and support conditions in deep beams are examined in some detail. In all, eleven deep beams with web openings are optimized and compared in nine groups. The optimal strut-and-tie models achieved are also compared with published experimental crack patterns. Numerical results have shown to confirm the experimental observations and to efficiently represent the load transfer mechanism in concrete deep beams with openings under ultimate load.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

The analysis and optimization of dual armor plate considering EQPS (EQPS를 이용한 복합장갑의 해석 및 최적설계)

  • 박명수;유정훈;정동택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

Differential Evolution Algorithms Solving a Multi-Objective, Source and Stage Location-Allocation Problem

  • Thongdee, Thongpoon;Pitakaso, Rapeepan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • The purpose of this research is to develop algorithms using the Differential Evolution Algorithm (DE) to solve a multi-objective, sources and stages location-allocation problem. The development process starts from the design of a standard DE, then modifies the recombination process of the DE in order improve the efficiency of the standard DE. The modified algorithm is called modified DE. The proposed algorithms have been tested with one real case study (large size problem) and 2 randomly selected data sets (small and medium size problems). The computational results show that the modified DE gives better solutions and uses less computational time than the standard DE. The proposed heuristics can find solutions 0 to 3.56% different from the optimal solution in small test instances, while differences are 1.4-3.5% higher than that of the lower bound generated by optimization software in medium and large test instances, while using more than 99% less computational time than the optimization software.

Design of Ultra Low Power Processor for Ubiquitous Sensor Node (유비쿼터스 센서 노드를 위한 저전력 프로세서의 개발)

  • Shin, Chi-Hoon;Oh, Myeong-Hoon;Park, Kyoung;Kim, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.165-167
    • /
    • 2006
  • In this paper we present a new-generation sensor network processor which is not optimized in circuit level, but in system architecture level. The new design build on a conventional processor architecture, improving the design by focusing on application oriented specification, ISA, and micro-architectural optimization that reduce overall design size and advance energy-per-instruction. The design employs harvard architecture, 8-bit data paths, and an compact 19 bit wide RISC ISA. The design also features a unique interrupt handler which offloads periodical monitoring jobs from the main part of CPU. Our most efficient design is capable of running at 300 KHz (0.3 MIPS) while consuming only about few pJ/instruction.

  • PDF

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

Optimum Design of Rail in Semiconductor Processing (반도체 공정에 이용되는 레일의 최적설계)

  • 조재승;김학선;황종균;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2004
  • There is an over head hoist transporter(OHT) by the system for delivering the wafer in semiconductor processing. The transfer system consist of carrier, vehicle, rail and support. The Tail supporting the wafer and the transfer system should maintain enough strength and stiffness. To achieve lightness and enough strength and stiffness, optimization algorithm should be introduced in design process. In this study, two kinds of section shapes as L-type, C-type is carried out the structure analysis and optimization. Total weight of rail is to be minimized while displacement should not exceed limit. To improve the initial model, topology optimization is done by the plain problem. Size optimization is done with 3D solid element and PLBA algorithm, the RQP algorithm. The weight of optimum model as L-type, C-type is decreased by 2.3%, 10% respectively. It is improved better than the initial model in the strength and stiffness of the structure.

COMPOSITES IN CONSTRUCTION : Size/scale Effects in Failure Theory (건설에서의 복합재료 : 파괴강도에 대한 치수효과)

  • Kim, Duk-Hyun;Kim, Du-Hwan;Oh, Sang-Sub;Lim, Tae-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.187-189
    • /
    • 2003
  • Almost all building/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design: Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method.on method.

  • PDF