• Title/Summary/Keyword: Situation recognition

Search Result 694, Processing Time 0.024 seconds

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

The Effect of Visual Feedback on One-hand Gesture Performance in Vision-based Gesture Recognition System

  • Kim, Jun-Ho;Lim, Ji-Hyoun;Moon, Sung-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.551-556
    • /
    • 2012
  • Objective: This study presents the effect of visual feedback on one-hand gesture performance in vision-based gesture recognition system when people use gestures to control a screen device remotely. Backgroud: gesture interaction receives growing attention because it uses advanced sensor technology and it allows users natural interaction using their own body motion. In generating motion, visual feedback has been to considered critical factor affect speed and accuracy. Method: three types of visual feedback(arrow, star, and animation) were selected and 20 gestures were listed. 12 participants perform each 20 gestures while given 3 types of visual feedback in turn. Results: People made longer hand trace and take longer time to make a gesture when they were given arrow shape feedback than star-shape feedback. The animation type feedback was most preferred. Conclusion: The type of visual feedback showed statistically significant effect on the length of hand trace, elapsed time, and speed of motion in performing a gesture. Application: This study could be applied to any device that needs visual feedback for device control. A big feedback generate shorter length of motion trace, less time, faster than smaller one when people performs gestures to control a device. So the big size of visual feedback would be recommended for a situation requiring fast actions. On the other hand, the smaller visual feedback would be recommended for a situation requiring elaborated actions.

Robust User Activity Recognition using Smartphone Accelerometer Sensors (스마트폰 가속도 센서를 이용한 강건한 사용자 행위 인지 방법)

  • Jeon, Myung Joong;Park, Young Tack
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.629-642
    • /
    • 2013
  • Recently, with the advent of smart phones, it brought many changes in lives of modern people. Especially, application utilizing the sensor information of smart phone, which provides the service adapted by user situations, has been emerged. Sensor data of smart phone can be used for recognizing the user situation, Because it is closely related to the behavior and habits of the user. currently, GPS sensor one of mobile sensor has been utilized a lot to recognize basic user activity. But, depending on the user situation, activity recognition system cannot receive GPS signal, and also not collect received data. So utilization is reduced. In this paper, for solving this problem, we suggest a method of user activity recognition that focused on the accelerometer sensor data using smart phone. Accelerometer sensor is stable to collect the data and it's sensitive to user behavior. Finally this paper suggests a noble approach to use state transition diagrams which represent the natural flow of user activity changes for enhancing the accuracy of user activity recognition.

Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition (객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크)

  • Kim, Jeong-Hun;Choi, Jong-Hyeok;Park, Young-Ho;Nasridinov, Aziz
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

Color Image Segmentation using Hierarchical Histogram (계층적 히스토그램을 이용한 컬러영상분할)

  • 김소정;정경훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1771-1774
    • /
    • 2003
  • Image segmentation is very important technique as preprocessing. It is used for various applications such as object recognition, computer vision, object based image compression. In this paper, a method which segments the multidimensional image using a hierarchical histogram approach, is proposed. The hierarchical histogram approach is a method that decomposes the multi-dimensional situation into multi levels of 1 dimensional situations. It has the advantage of the rapid and easy calculation of the histogram, and at the same time because the histogram is applied at each level and not as a whole, it is possible to have more detailed partitioning of the situation.

  • PDF

Test bed for autonomous controlled space robot (우주로봇 자율제어 테스트 베드)

  • 최종현;백윤수;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1828-1831
    • /
    • 1997
  • this paper, to represent the robot motion approximately in space, delas with algorithm for position recognition of space robot, target and obstacle with vision system in 2-D. And also there are algorithms for precise distance-measuring and calibration usign laser displacement system, and for trajectory selection for optimizing moving to object, and for robot locomtion with air-thrust valve. And the software synthesizing of these algorithms hleps operator to realize the situation certainly and perform the job without any difficulty.

  • PDF

A study of information gathering method for the situation recognition (상황인지를 위한 정보수집 방식의 연구)

  • Park, Sangjoon;Lee, Jongchan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.273-274
    • /
    • 2019
  • 본 논문에서는 위험지역 주위의 사고 관련 상황 인지를 위한 정보 수집 방안을 고려한다. 사고 상황에 대한 인지는 위험상황에 대응하기 위한 것으로 위기에 대한 신속한 대응을 처리하도록 유도한다. 위험지역에서 수집된 정보가 특정상황에 대한 인지로 연결되기 위하여 각각의 상황을 실시간으로 분석해야 한다. 이것을 위하여 위험지역에 대한 정보수집 방안을 설계하도록 한다.

  • PDF

Research about Recognition of Government Officials Regarding Korean Disaster Management System in Charge (한국 재난관리체계에 대한 담당공무원들의 인식에 관한 연구)

  • Lee, Jung-Il
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.10-25
    • /
    • 2010
  • As disaster potential power of modern society grows larger, to improve and reinforce efficiently a national system which prepares and responds disasters, analyzed the survey for government officials of the department disaster management. Following is the contents of this research. First, cooperative relationship to disaster management organizations. Second, necessity of law establishment related crisis and disaster department. Third, by recognition regarding disaster management situational variable, overall recognition regarding disaster management situation, overall recognition regarding crisis type, recognition regarding occurrence possibility along disaster scale. Fourth, by recognition regarding structural variable of disaster management, the National Emergency Management Agency regarding disaster management, related organization, recognition difference of local government. It is a research about confusion regarding step of prevention - preparation - correspondence - restoration.

Animal Fur Recognition Algorithm Based on Feature Fusion Network

  • Liu, Peng;Lei, Tao;Xiang, Qian;Wang, Zexuan;Wang, Jiwei
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • China is a big country in animal fur industry. The total production and consumption of fur are increasing year by year. However, the recognition of fur in the fur production process still mainly relies on the visual identification of skilled workers, and the stability and consistency of products cannot be guaranteed. In response to this problem, this paper proposes a feature fusion-based animal fur recognition network on the basis of typical convolutional neural network structure, relying on rapidly developing deep learning techniques. This network superimposes texture feature - the most prominent feature of fur image - into the channel dimension of input image. The output feature map of the first layer convolution is inverted to obtain the inverted feature map and concat it into the original output feature map, then Leaky ReLU is used for activation, which makes full use of the texture information of fur image and the inverted feature information. Experimental results show that the algorithm improves the recognition accuracy by 9.08% on Fur_Recognition dataset and 6.41% on CIFAR-10 dataset. The algorithm in this paper can change the current situation that fur recognition relies on manual visual method to classify, and can lay foundation for improving the efficiency of fur production technology.