• Title/Summary/Keyword: Site Slope

Search Result 710, Processing Time 0.022 seconds

A Study on Stability Evaluation and Numerical Analysis for Installing of Real-Time Monitoring System on Risky Road Cut Slope (위험절토사면의 안정성평가 및 상시계측시스템 설치를 위한 수치해석적 연구)

  • Choi, Ji-Yong;Lee, Jong-Hyun;Lee, Yeob-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1139-1146
    • /
    • 2009
  • Collapse of cut slope includes many uncertainties in view of the reason and time. So, in the past, risky cut slopes have been dealt after they've been collapsed through post-management measures. But recently, advanced disaster prevention system is required, and as a part of that RTMS(Real-Time Monitoring System) was developed. In this study, stability of risky cut slope was evaluated by site investigation. To grasp deformation behavior characteristics of slope, numerical analysis based on FEM was performed and using results of that, specific standards for installation of Real-Time Monitoring System were suggested.

  • PDF

Characteristics of Rock Slope Joint Using UAV (무인항공기를 활용한 암반비탈면 절리 특성 연구)

  • Kim, Yeon-Kyu;Yoon, Won-Sub;Kim, Seung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.883-890
    • /
    • 2021
  • In this study, joint analysis was conducted on the rock slope by aerial surveying using UAV. Aerial photos were taken using UAV to measure the directionality of the rock slope exposed to the site, and the directionality of the joint was analyzed using the photographed photos. UAV photography was taken under conditions of 90% overlap and an altitude of 50m. The photographing path was measured in the horizontal, vertical, and oblique directions based on the slope, and the joint characteristics were analyzed. Aerial surveying research on the joint directionality analysis of rock slopes is still incomplete, and the method for accurate joint directionality analysis is not presented strategically, so it is difficult to apply it in design. Through the results of this study, we would like to propose an flight photographing technique for the investigation of rock joints. As a result of the study, in the case of the joint investigation of the rock slope using UAV, it was necessary to change conditions such as altitude, aerial photography route, and overlap according to the size of the joint according to the site conditions.

Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea (동해 울릉분지에서 대륙사면과 분지 퇴적물의 지화학적 특성에 따른 황산염 환원 비교)

  • You, Ok-Rye;Mok, Jin-Sook;Kim, Sung-Han;Choi, Dong-Lim;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.299-307
    • /
    • 2010
  • In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ${\mu}mol$ $cm^{-3}$) and iron oxides (133 ${\mu}mol$ $cm^{-3}$), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol $cm^{-3}$ $d^{-1}$ at the slope site (M1) and from 0.65 to 22.32 nmol $cm^{-3}$ $d^{-1}$ at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol $m^{-2}$ $d^{-1}$) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol $m^{-2}$ $d^{-1}$) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.

Characteristics of Nocturnal Cooling at a Pear Orchard in Frost-Prone Area (서리상습지 배 과수원에서의 야간 냉각 특성)

  • 황규홍;이정택;윤진일;허승오;심교문
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.206-214
    • /
    • 2001
  • Cooling rate shows the highest as about 0.7$^{\circ}C$/hr on spring season and the lowest as about 0.3$^{\circ}C$/hr on september at plain place. The correlation coefficient between net radiation and cooling rate from sunrise to sunset was 0.63$^{**}$, It became higher to 0.90$^{**}$ when the wind speed decreased lower than 0.5 m/sec, and it decreased as the wind speed increased. On a clear and calm day, cooling rates were observed as 1.4$^{\circ}C$/hr on the plain (site 1, 2, 3), 1.2$^{\circ}C$/hr on the slope (site 4, 5) and 0.6$^{\circ}C$/hr on the top of mountain (site 6). In condition of the wind speed is 1.2~2 m/sec on a clear and calm day and the temperature on the top of mountain is lower than that of slope and plain, the temperature on the slope (site 4,5) was increased unlike our expectation.ion.

  • PDF

Case Study of the Early Stage Vegetation Recovery with Soil Property in the Roadside Slopes of the Expressway (고속도로 비탈면 녹화공법 시험시공지의 토질조건별 초기 녹화효과 사례연구)

  • Jeman Lee;Kyung-Hoon Kim;Gi-Seong Jeon;Sangjun Im
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.47-59
    • /
    • 2023
  • This study investigated and analyzed the effects of vegetation on the roadside slopes at the expressway construction sites in order to evaluate the vegetation recovery regarding soil type and revegetation technique. We selected two study sites with an area of 1,000 m2 located in the construction sites of the Korea Expressway Corporation, named Hwado-Yangpyeong Expressway Section 3 and Saemangeum-Jeonju Expressway Section 7. The revegetation was monitored in three plot groups (earth, soft rock, and hard rock slopes), and scored based on the guideline of the Ministry of Land, Transport and Maritime Affairs. The revegatation was generally lower in the Hwado-Yangpyeong site than that of the Saemangeum-Jeonju site. The field monitoring indicated that the revegetation varied with slope aspect and environmental characteristics between plots. the Saemangeum-Jeonju site showed a high overall evaluation score, but there was a slight difference in the score for each plot. This seems to be due to the differences in geographical conditions, construction methods, and site environment between two sites. This study can provide basic information to understand the short-term effects of revegetation techniques in the roadside slopes.

A Study on the Stability Analysis and Countermeasure of Tunnel Portal Failure Slope - in Suanbo Hot Springs 1 and 2 Tunnel Failure Site (터널 갱구부 붕괴 사면의 안정성 해석 및 보강공법에 관한 연구 - 수안보 온천 1, 2터널 붕괴 현장을 중심으로)

  • Baek, Yong;Koo, Ho-Bon;Yoo, Ki-Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.367-378
    • /
    • 2002
  • Recently, the number of tunnels on national roads has been increased due to the trend that construction of the large-scaled cut slopes is limited because of the environmental issues. Therefore, the slope failures of tunnel portal have often occurred. The tunnel portal in use has limitations on selection of the countermeasure and construction against slope failure. In the cases of Suanbo hot springs 1 and 2 tunnel portals, seedding was chosen and constructed as the countermeasureof slope failure when the tunnel was first built but collapsed in April, 2002. In this study, the failure sites were examined accurately through the site investigation and an efficient countermeasure according to stability analysis is presented. It is shown that it is very efficient to use resloping for Suanbo hot springs 1 tunnel and concrete buttress, rock anchor to reinforcement countermeasure, and attached rockfall prevention net by dividing the site into 3 sections for Suanbo hot springs 2 tunnel.

Topographical Changes in Torrential Stream After Dredging in Erosion Control Dam - Using Terrestrial LiDAR Data - (사방댐 준설이 계류의 지형변화에 미치는 영향 - 지상 LiDAR 자료를 이용하여 -)

  • Seo, Junpyo;Woo, Choongshik;Lee, Changwoo;Kim, Kyongha;Lee, HeonHo
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.392-401
    • /
    • 2014
  • This research was carried out to understand the impact of mountainous torrent on topographical change of slope and sediment volume within a deposit line by dredging of soil erosion control dam. Terrestrial LiDAR surveys were conducted at dredged and non-dredged sites. Terrestrial LiDAR has an advantage on detecting topographical changes easily without demanding workmanship and technical skill for users. The distribution of erodible slope ($20^{\circ}-40^{\circ}$) was higher in non-dredged site than that of dredged site. However, the distribution was higher in dredged site than that of non-dredged site after rainy season. Erosion and deposition appeared regularly in a dredged site, but those occurred irregularly in the non-dredged site. The inflow of soil per square meter was 1.7 times higher in dredged site than that of non-dredged site after rainy season. The difference of rainfall in each site did not affect to soil erosion. The distribution of erodible slope was increased in dredged site than that of non-dredged site after rainy season due to inflow of soil from upper stream caused by dredging.

Exact Activity Overlapping Method for Time-cost Tradeoff

  • Gwak, Han-Seong;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.109-110
    • /
    • 2015
  • This paper presents a computational method that identifies an exact set of optimal overlap rates between critical activities to meet job site specific needs by using rework cost-slope. The procedures to compute the exact solution are provided in peudocode algorithm. The method is coded into Exact Concurrent Construction Scheduling system that allows practitioners to make more informed decision in accordance with the site-specific condition involved in the overlapping of critical activities. Test cases verify the validity of the computational method and the usability of the system.

  • PDF

A Study on Site investigation for Cut Slope Management Manual preparation (절토사면 유지관리 매뉴얼 작성을 위한 현장조사에 관한 연구)

  • Ji, Young-Hwan;Chang, Buhm-Soo;Kim, Yong-Soo;Lee, Jong-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.825-830
    • /
    • 2005
  • Cut slope and facility of management investigation is the protection of humans and properties. it is very important the prevention of disaster facility and the damage of the slope protection facility. It is very difficult to forecast slope stability, disaster possibility and collapse. It will be able to minimize the damage which it prepare against slope facility and cut slope of deformable investigation and collapse and the disaster. therefore those deformable investigation is important. Investigations execute upheaval, crack, sliding for slope and cut slope reinforcement. Investigation executes forecast in place where the construction problem, the effect which the damage in road traffic or the contiguity facility.

  • PDF

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.