DOI QR코드

DOI QR Code

Topographical Changes in Torrential Stream After Dredging in Erosion Control Dam - Using Terrestrial LiDAR Data -

사방댐 준설이 계류의 지형변화에 미치는 영향 - 지상 LiDAR 자료를 이용하여 -

  • Seo, Junpyo (Department of Forest Disaster Management, Korea Forest Research Institute) ;
  • Woo, Choongshik (Department of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Changwoo (Department of Forest Disaster Management, Korea Forest Research Institute) ;
  • Kim, Kyongha (Department of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, HeonHo (Department of Forest Resources, Yeungnam University)
  • 서준표 (국립산림과학원 산림방재연구과) ;
  • 우충식 (국립산림과학원 산림방재연구과) ;
  • 이창우 (국립산림과학원 산림방재연구과) ;
  • 김경하 (국립산림과학원 산림방재연구과) ;
  • 이헌호 (영남대학교 산림자원학과)
  • Received : 2014.03.27
  • Accepted : 2014.06.03
  • Published : 2014.09.30

Abstract

This research was carried out to understand the impact of mountainous torrent on topographical change of slope and sediment volume within a deposit line by dredging of soil erosion control dam. Terrestrial LiDAR surveys were conducted at dredged and non-dredged sites. Terrestrial LiDAR has an advantage on detecting topographical changes easily without demanding workmanship and technical skill for users. The distribution of erodible slope ($20^{\circ}-40^{\circ}$) was higher in non-dredged site than that of dredged site. However, the distribution was higher in dredged site than that of non-dredged site after rainy season. Erosion and deposition appeared regularly in a dredged site, but those occurred irregularly in the non-dredged site. The inflow of soil per square meter was 1.7 times higher in dredged site than that of non-dredged site after rainy season. The difference of rainfall in each site did not affect to soil erosion. The distribution of erodible slope was increased in dredged site than that of non-dredged site after rainy season due to inflow of soil from upper stream caused by dredging.

본 연구는 사방댐의 준설작업이 퇴사선내 계류의 지형변화에 미치는 영향을 알아보기 위해서 준설을 시행한 사방댐과 준설을 시행하지 않은 사방댐을 대상으로 지상 LiDAR 측량을 실시하고 경사도 및 체적의 지형변화를 평가하였다. 지상 LiDAR 장비는 사용자의 숙련도에 영향을 받지 않고 쉽게 지형변화를 관측할 수 있는 장점이 있다. 본 연구결과, 경사도 변화는 토양침식 유발의 위험이 높은 경사도($20^{\circ}{\sim}40^{\circ}$)가 차지하는 비율은 준설을 시행한 사방댐 지역보다 준설을 시행하지 않은 사방댐에서 수치적으로는 더 높게 나타났지만, 우기후 위험구역은 준설을 시행하지 않은 사방댐에서 더 감소하는 것으로 나타났다. 체적변화는 준설을 시행한 사방댐에서 침식과 퇴적이 규칙적인 양상으로 나타났지만, 준설을 시행하지 않은 사방댐에서는 침식과 퇴적이 불규칙적으로 나타났다. 그리고 정량적 분석결과 준설을 시행하지 않은 사방댐에 비해 준설을 시행한 사방댐에서 우기후 $m^2$당 1.7배 더 많은 토사가 유입되었다. 조사대상지의 강우량 차이는 토사유출량에 미치는 영향이 없는 것으로 나타났다. 따라서, 준설을 시행한 사방댐에서는 준설을 시행하지 않은 사방댐에서보다 우기를 지나면서 토양침식의 위험이 높은 경사도 분포가 증가하고, 준설작업을 시행한 지역의 상류계류에서 토사가 많이 유입된 것으로 나타났다.

Keywords

References

  1. Choi, K. 2001. Occurrence status and causes of landslide in Korea. Journal of KOSHAM 1(3): 7-14.
  2. Du, J.C. and Teng, H.C. 2007. 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction 16: 657-663. https://doi.org/10.1016/j.autcon.2006.11.002
  3. Dunn, M. and Hickey, R. 1998. The Effect of Slope Algorithms on Slope Estimates within a GIS. Cartography 27(1): 9-15. https://doi.org/10.1080/00690805.1998.9714086
  4. Jang, C.L. 2010. Adjustment processes of a disturbed channel by dredging. Magazine of Korea water resources association 43(3): 29-33.
  5. Jang, C.L. and Yoon, J.H. 2009. Experimental Study on Adjustment Processes of the Disturbed Channel by Dredging. Korea Society of Civil Engineers 2009(10): 739-742.
  6. Jun, B.H., Jang, C.D., and Kim, N.G. 2010. Analysis of Erosion and Deposition by Debris-flow with LiDAR. Journal of the Korean Association of Geographic Information Studies 13(2): 54-63.
  7. Kim, W.Y. and Chae, B.G. 2009. Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea. The Journal of Engineering Geology 19(3): 331-344.
  8. Kim, Y.P., Lee, K.H., and Song, S.T. 2008. Analysis of Soil Erosion Hazard Zone in Gayasan National Park. Korea Institute of Forest Recreation 12(3): 1-11.
  9. Korea Forest Service. 2007. The history of 100 years of erosion control works in Korea. pp. 838.
  10. Korea Forest Service. 2011. Developing on the types of specific multi-functional debris barrier. pp. 294.
  11. Lee, S.W. 2011. Application of RUSLE Model in Prediction of Soil Loss at Small Mountainous Area. Graduate School of Forest Resources. Yeungnam University. pp. 56.
  12. Lee, S.Y. 2007. Monitoring of the Landslide Using the Terrestrial LiDAR. Graduate School of Civil Engineering. Kangwon University. pp. 146.
  13. Mitasova, H., Hardin, E., Starek, M.J., Harmon, R.S., and Overton, M.F. 2011. Landscape dynamics from LiDAR data time series. In: Geomorphometry 2011. Hengl, T., Evans, I.S., Wilson, J.P. and Gould, M. (eds.). Redlands, CA. p. 3-6.
  14. Park, J.H., Ma, H.S., Kim, K.H., and Youn, H.J. 2011. Influences of the Construction of the Torrent Control Structure using Customized Tetrapods on the Stream Water Quality at Valley. Journal of Korean Forestry Society 100(1): 105-111.
  15. Park, J.K., Lee, S.Y., Yang, I.T., and Kim, D.M. 2010. Monitoring of the Natural Terrain Behavior Using the Terrestrial LiDAR. Journal of the Korean Society of Civil Engineers 30(2): 191-198.
  16. Ryu, T.K. and Jang, K.K. 1998. Effect of Soil Erosion Control Dam in the Hillside Area. Journal of Life Science and Natural Resources Research. Institute of Life Science and Natural Resources 20: 42-47.
  17. Scheidl, C., Rickenmann, D., and Chiari, M. 2008. The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Natural Hazards and Earth System Science 8: 1113-1127. https://doi.org/10.5194/nhess-8-1113-2008
  18. Woo, C.S., Youn, H.J., Lee, C.W., and Lee, K.S. 2012. Estimation of Spatial Soil Distribution Changed by Debris Flow using Airborne Lidar Data and the Topography Restoration Method. Journal of Korean Forestry Society 101(1): 20-27.

Cited by

  1. Estimation of Sediment Discharge Controlled by Sediment-filled Check-dam in a Forested Catchment vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.321