• Title/Summary/Keyword: Sintering densification

Search Result 536, Processing Time 0.025 seconds

Densification Kinetics of Steel Powders during Direct Laser Sintering

  • Simchi, Abdolreza;Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.250-251
    • /
    • 2006
  • It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.

  • PDF

Effects of the Sintering Atmosphere and Ni Content on the Liquid-phase Sintering of $TiB_2$-Ni

  • Suk-Joong L. Kang;Baung, Jin-Chul;Park, Yeon-Gyu;Kang, Eul-Son;Baek, Yong-Kee;Jung, Sug-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.207-211
    • /
    • 2001
  • The effects of the sintering atmosphere and Ni content on t도 densification of TiB$_2$-Ni have been investigated. TiB$_2$powder compacts containing 10, 20, and 30 wt% Ni were liquid-phase sintered at 1500-1$700^{\circ}C$ in vacuum or in flowing Ar. The densification was enhanced as Ni content increased. For a given Ni content, the densification was faster in compacts in compacts with larger grain size. These densification behaviors agree well with the prediction of the recently developed pore-filling theory. For samples containing high Ni contents, 80TiB$_2$-20Ni and 70TiB$_2$-30Ni, the densification was faster in vacuum than in Ar. In particular, 70TiB$_2$-30Ni was fully densified at 1$700^{\circ}C$ for 60min in vacuum. The suppressed densification in Ar was due to the entrapped Ar in the isolated pores. On the other hand, for 90TiB$_2$-10Ni, the Ar-sintering resulted in higher densification than did the vacuum-sintering. This result was attributed to the suppression of Ni volatilization by the Ar in the furnace and a retarded isolation of pores due to the limited amount of liquid in the sample. Therefore, vacuum sintering is recommended for the preparation of TiB$_2$-Ni with a high Ni content while Ar sintering is recommended for the preparation of TiB$_2$-Ni with a low Ni content.

  • PDF

Densification Behavior of Rhenium Alloy using Master Sintering Curve

  • Park, Dong Yong;Oh, Yong Jun;Kwon, Young Sam;Lim, Seong Taek;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in $H_2$ atmosphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetrically treated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforward approach to describe the densification behavior during sintering. The densification behaviors for each material were analyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC with a minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as well as provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed that the W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.

Effects of Sintering Atmosphere and Dopant Addition on the Densifcation of $SnO_2$ Ceramics (첨가제와 소결분위기가 $SnO_2$ 요업체의 치밀화에 미치는 영향)

  • 정재일;김봉철;장세홍;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1221-1226
    • /
    • 1997
  • The effects of sintering atmosphere and dopant addition on the behavior of densification and grain growth of SnO2 ceramics were investigated with consideration of defect chemistry. CoO and Nb2O5 were chosen as dopants, and oxygen and nitrogen were used for controlling of sintering atmospheres. With the decrease of oxygen partial pressure, densification was depressed due to evaporation of SnO2 ceramics. In the case of SnO2 sintering, the addition of CoO, which produced oxygen vacancy in SnO2 ceramics, led to acceleration of densification and grain growth. On the contrary, when Nb2O5 as a dopant producing Sn vacancy was added to SnO2 ceramics, densification and grain growth were simultaneously retarded. As results, it was conformed that diffusion of oxygen ions was rate determinant in densification and grain growth of SnO2 ceramics.

  • PDF

Monte Carlo Simulation of Densification during Liquid-Phase Sintering

  • Lee, Jae Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.288-294
    • /
    • 2016
  • The densification process during liquid-phase sintering was simulated by Monte Carlo simulation. The Potts model, which had been applied to coarsening during liquid-phase sintering, was modified to include vapor particles. The results of two- and threedimensional simulations showed a temporal decrease in porosity, in other words, densification, and an increase in the average size of pores. The results also showed growth of solid grains and the effect of wetting angle on microstructure.

In-Situ Measurement of Densification Behavior of Nano Cu Powders during Sintering (In-Situ 측정에 의한 나노 Cu 분말의 소결 공정 시 치밀화 거동)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Rhee, C.K.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.210-214
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy via compaction and sintering. In the study, densification behavior of nano Cu powders during pressureless sintering was investigated using an in-situ optical dilatometer technique. The initial heating and steady temperature stages during the sintering of nano Cu powder compacts were observed. At the initial heating stage, the powder compact has many porosities and full densification needs high temperature and/or high pressure sintering. In the experimental analysis, changes in geometry and density were measured and discussed for optimal consolidation and densification by the in-situ optical dilatometer.

Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature (나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석)

  • 김홍기;김기태
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

Co-sintering of M2/316L Layers for Fabrication of Graded Composite Structures

  • Firouzdor, V.;Simchi, A.;Kokabi, A.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.696-697
    • /
    • 2006
  • This paper presents the densification and microstructure evolution of bilayer components made from 316L stainless steel and M2 High speed steel during co-sintering process. The sintering was carried out at temperatures ranging from $1230-1320^{\circ}C$ in a reducing atmosphere. The addition of boron to 316L was examined in order to increase the densification rate and improve the sintering compatibility between the two layers. It was shown that the mismatch strain bettwen the two layers induces biaxial stresses during sintering, influencing the densification rate. The effect of boron addition was also found to be positive as it improves the bonding between the two layers.

  • PDF

Effect of Heating Rate and $V_2O_5$ Addition on Densification and Electrical Properties of $Pb(Mn_{1/3}Sb_{2/3})O_3-PZT$ Ceramics for Piezoelectirc Transformer (압전변압기용 $Pb(Mn_{1/3}Sb_{2/3})O_3-PZT$ 세라믹스에서 승온속도 및 $V_2O_5$ 첨가가 치밀화 및 전기적 특성에 미치는 영향)

  • 허수정;손준호;손정호;이준형;김정주;정우환;박명식;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.295-301
    • /
    • 2000
  • The effect of V2O5 addition on the low temperature sintering of Pb(Mn1/3Sb2/3)O3-PZT ceramics, which is known as a prominent material for piezoelectric transformer application was studied, and the densification behavior and piezoelectric characteristics of the samples as a function of heating rate were also examined. V2O5 led the system to liquid phase sintering by forming liquid phase during sintering, which accelerated densification through the particle rearrangement in the early stage of sintering. The liquid phase mostly existed at grain boundaries retarded the evaporation of PbO, while the densification temperature and the weight loss of V2O5-free samples were higher than those of samples with V2O5. Faster heating improved the densification of the samples regardless of V2O5 addition. The low temperature sintering at 100$0^{\circ}C$ was achieved in PMS-PZT ceramics with high density and reasonable dielectric and piezoelectric characteristics. This result revealed optimistic way to the development of multi-layered piezoelectric transformers.

  • PDF

Effects of Particle Size of Alumina on Densification Behaviors of Alumina-Talc System During Liquid-Phase Sintering (알루미나-활석계의 액상소결에서 알루미나 입자크기가 치밀화 거동에 미치는 영향)

  • 김호양;이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1308-1315
    • /
    • 1998
  • Effects of particle size of alumina on densification behavior during liquid-phase sintering of alumina-talc system were investigated with emphasis on particle rearrangement process. In the case of using coarse alu-mina powder densiication of specimens was rapidly accelerated after formation of liquid phase due to easy particle rearrangement process with addition of talc and increase of sintering temperature. On the contrary when fine alumina powder was used premature densification of alumina matrix region formed before for-mation of liquid phase rigid skeleton structure and then it seemed to inhibit rearrangement process during crease of sintering temperature. As results the densification of specimens using coarse alumina powder was higher than that of the case of using fine one.

  • PDF