DOI QR코드

DOI QR Code

Densification Behavior of Rhenium Alloy using Master Sintering Curve

  • Park, Dong Yong (Department of Mechanical Engineering, Pohang University of Science and Engineering (POSTECH)) ;
  • Oh, Yong Jun (Division of New Materials Engineering, Hanbat National University) ;
  • Kwon, Young Sam (CetaTech, Inc.) ;
  • Lim, Seong Taek (Agency for Defense Development) ;
  • Park, Seong Jin (Department of Mechanical Engineering, Pohang University of Science and Engineering (POSTECH))
  • Received : 2014.02.12
  • Accepted : 2014.02.17
  • Published : 2014.02.28

Abstract

This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in $H_2$ atmosphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetrically treated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforward approach to describe the densification behavior during sintering. The densification behaviors for each material were analyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC with a minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as well as provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed that the W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.

Keywords

References

  1. P. Thakre and V. Yang: J. Propul. Power., 25 (2009), 40. https://doi.org/10.2514/1.37922
  2. K. Upadhya, J. Yang and W. Hoffman: 'Advanced Materials for Ultrahigh Temperature Structural Applications Above 2000 deg C'. Technical Report (1997).
  3. J. C. Carlen and B. D. Bryskin: Mater Manuf. Process., 9 (1994) 1087. https://doi.org/10.1080/10426919408934977
  4. R. Hickman and T. McKechnie: Advanced Materials and Processes for Boost Phase Nozzles. 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida (2004).
  5. R. Hickman, T. McKechnie and J. O'Dell: Material properties of net shape, vacuum plasma sprayed rhenium and tungsten. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Juntsville, Alabama (2003).
  6. T. Hayashi, S. Takaoka, A. Ichida, H. Ohara and T. Yoshioka: Mater. Manuf. Process, 9 (1994) 1047. https://doi.org/10.1080/10426919408934975
  7. K. Nagarathnam, A. Renner, D. Trostle, D. Kruczynski and D. Massey: Development of 1000-Ton Combustion-Driven Compaction Press for Materials Development and Processing. 2007 MPIF/APMI International Conference on Powder Metallurgy & Particulate Materials Vol. 1, Colorado (2007) 3.
  8. R. L. Mannheim and J. L. Garin: Key. Eng. Mat., 189 (2001) 302.
  9. G. Leichtfried, J. H. Schneibel and M. Heilmaier: METAll. Mater. Trans. A, 37 (2006) 2955. https://doi.org/10.1007/s11661-006-0177-9
  10. T. N. McKechnie, R. R. Hickman and A. Argarwal: 'Low Cost, Net Shape Fabrication of Rhenium and High Temperature Materials for Rocket Engine Components'. Technical Report (2001).
  11. L. Liu, N. H. Loh, B. Y. Tay and S. B. Tor: Powder. Technol., 206 (2011) 246. https://doi.org/10.1016/j.powtec.2010.09.027
  12. R. M. German and A. Bose: Injection molding of metals and ceramics. Metal Powder Industries, (1997).
  13. F. V. Lenel: Powder metallurgy: principles and applications. Metal Powder Industries, (1980).
  14. D. Y. Park, S. W. Lee, S. J. Park, Y.-S. Kwon and I. Otsuka: Metall. Mater. Trans. A, 44 (2013) 1508. https://doi.org/10.1007/s11661-012-1477-x
  15. H. H. Su and D. L. Johnson: J. Am. Ceram. Soc., 79 (1996) 3211. https://doi.org/10.1111/j.1151-2916.1996.tb08097.x
  16. D. C. Blaine, J. D. Gurosik, S. J. Park, D. F. Heaney and R. M. German: Metall. Mater. Trans. A, 37A (2006) 715.
  17. D. C. Blaine, S. J. Park, P. Suri and R. M. German: Metall. Mater. Trans. A, 37A (2006) 2827.
  18. S. J. Park, J. M. Martin, J. F. Guo, J. L. Johnson and R. M. German: Metall. Mater. Trans. A, 37A (2006) 2837.
  19. S. J. Park and R. M. German: IJMIS, 1 (2007) 128.
  20. S. J. Park, S. H. Chung, J. M. Martin, J. L. Johnson and R. M. German: Metall. Mater. Trans. A, 39A (2008) 2941.
  21. D. C. Blaine, S. J. Park and R. M. German: J. Am. Ceram. Soc., 92 (2009) 1403. https://doi.org/10.1111/j.1551-2916.2009.03011.x
  22. S. J. Park, P. Suri, E. Olevsky and R. M. German: J. Am. Ceram. Soc., 92 (2009) 1410. https://doi.org/10.1111/j.1551-2916.2009.02983.x
  23. I. M. Robertson and G. B. Schaffer: Metall. Mater. Trans. A, 40A (2009) 1968.
  24. R. Bollina, S. J. Park and R. M. German: Powder. Metall., 53 (2010) 20. https://doi.org/10.1179/174329009X409688
  25. J. D. Hansen, R. P. Rusin, M. H. Teng and D. L. Johnson: J. Am. Ceram. Soc., 75 (1992) 1129. https://doi.org/10.1111/j.1151-2916.1992.tb05549.x
  26. Z. Y. Liu, N. H. Loh, K. A. Khor and S. B. Tor: Scripta. Mater., 44 (2001) 1131. https://doi.org/10.1016/S1359-6462(01)00664-9
  27. K. Saitou: Scripta. Mater., 54 (2006) 875. https://doi.org/10.1016/j.scriptamat.2005.11.006
  28. P. R. R. Naidu Nagender: Phase Diagrams of Binary Tungsten Alloys ASM International Place, (1991) 232.
  29. D. Y. Park, Y. J. Oh, Y. S. Kwon, S. T. Lim and S. J. Park: Int. J. Refract. Met. H., 42 (2014) 205. https://doi.org/10.1016/j.ijrmhm.2013.09.007
  30. C. C. Sparks: Fabrication of Solid Solution Tungsten-rhenium Alloys by High Energy Ball Milling and Spark Plasma Sintering, Materials Science and Engineering, Boise State University, (2012).