• Title/Summary/Keyword: Rhenium alloy

Search Result 8, Processing Time 0.032 seconds

Densification Behavior of Rhenium Alloy using Master Sintering Curve

  • Park, Dong Yong;Oh, Yong Jun;Kwon, Young Sam;Lim, Seong Taek;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in $H_2$ atmosphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetrically treated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforward approach to describe the densification behavior during sintering. The densification behaviors for each material were analyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC with a minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as well as provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed that the W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures

  • Mukherji, D.;Rosler, J.;Wehrs, J.;Eckerlebe, H.;Gilles, R.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.205-219
    • /
    • 2012
  • Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the present day single crystal Ni-based superalloys. The Co-Re based alloys are designed to have very high melting range. Although Co-alloys are used in gas turbine applications today, the Co-Re system was never exploited for structural applications and basic knowledge on the system is lacking. The alloy development strategy therefore is based on studying alloying additions on simple model alloy compositions of ternary and quaternary base. Various strengthening possibilities have been explored and precipitation hardening through fine dispersion of MC type carbides was found to be a promising route. In the early stages of the development we are mainly dealing with polycrystalline alloys and therefore the grain boundary embrittlement needed to be addressed and boron addition was considered for improving the ductility. In this paper recent results on the effect of boron on the strength and ductility and the stability of the fine structure of the strengthening TaC precipitates are presented. In the beginning the alloy development strategy is briefly discussed.

Interfacial Microstructure of Diffusion-Bonded W-25Re/Ti/Graphite Joint and Its High-Temperature Stability (확산 접합에 의해 제조된 텅스텐-레늄 합금/티타늄/그래파이트 접합체의 미세구조 및 고온 안정성)

  • Kim, Joo-Hyung;Baek, Chang Yeon;Kim, Dong Seok;Lim, Seong Taek;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.751-756
    • /
    • 2016
  • Graphite was diffusion-bonded by hot-pressing to W-25Re alloy using a Ti interlayer. For the joining, a uniaxial pressure of 25 MPa was applied at $1600^{\circ}C$ for 2 hrs in an argon atmosphere with a heating rate of $10^{\circ}C\;min^{-1}$. The interfacial microstructure and elemental distribution of the W-25Re/Ti/Graphite joints were analyzed by scanning electron microscopy (SEM). Hot-pressed joints appeared to form a stable interlayer without any micro-cracking, pores, or defects. To investigate the high-temperature stability of the W-25Re/Ti/Graphite joint, an oxy-acetylene torch test was conducted for 30 seconds with oxygen and acetylene at a 1.3:1 ratio. Cross-sectional analysis of the joint was performed to compare the thickness of the oxide layer and its chemical composition. The thickness of W-25Re changed from 250 to $20{\mu}m$. In the elemental analysis, a high fraction of rhenium was detected at the surface oxidation layer of W-25Re, while the W-25Re matrix was found to maintain the initial weight ratio. Tungsten was first reacted with oxygen at a torch temperature over $2500^{\circ}C$ to form a tungsten oxide layer on the surface of W-25Re. Then, the remaining rhenium was subsequently reacted with oxygen to form rhenium oxide. The interfacial microstructure of the Ti-containing interlayer was stable after the torch test at a temperature over $2500^{\circ}C$.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Solvent Extraction Separation of Re (VI) from Hydrochloric Acid Leaching Solution of Spent Super Alloy by Alamine 304-1 (폐 초내열합금 염산침출 용액으로부터 Alamine304-1을 이용한 레늄의 용매추출분리)

  • Ahn, Jong-gwan;Jung, Hee-Kyeoung;Jang, Jae-Young;Kim, Min-Seuk
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.56-62
    • /
    • 2015
  • Solvent extraction experiments for the separation and recovery of Re from hydrochloric acid leaching solution of spent super alloy by Alamine 304-1 were carried out. The effects of some variables, such as the nature and concentration of the extractants, HCl concentration, and the presence of impurities were investigated. The synthetic solutions of Re were prepared by dissolving ammonium perrhenate (APR), Alamine304-1, Cyanex272 and $D_2EHPA$ were used solvent extractants distilled in kerosene. The extraction percentage of Re by Alamine304-1 was higher than the other extractants as Cyanex272 and $D_2EHPA$ and the percentage is about 99%. Only 99% of Re was extracted in the presence of Al, Co and V in HCl solution.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.