• Title/Summary/Keyword: Sintering characteristics

Search Result 911, Processing Time 0.025 seconds

Filtration Characteristics of Polymeric Porous Materials Composed of Polypropylene and Polyethylene (Polypropylene과 Polyethylene으로 구성된 기공성 고분자 소재의 여과특성)

  • Ahn, Byeng-Gil;Oh, Kyeong-Keun;Choi, Ung-Soo;Kwon, Oh-Kwan
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.32-40
    • /
    • 1998
  • The polymeric porous materials which consist of polypropylene(PP) and polyethylene(PE) powder were prepared to apply to the air purification systems by extrusion sintering method. SEM analysis showed that a composite polymeric porous structure made up of PP and PE was obtained, where PE was melted and adhered to PP because the melting temperature of PE was lower than that of PP. The filtration characteristics and mechanical properties of polymeric porous materials were investigated by varying the head die temperature of the extruder, extrusion velocity, and the melt index and quantity of PE. The filtration efficiency was proportional to the quantity of PE but inversely proportional to the melt index of PE. The polymeric porous materials composed of PP and PE, which was made by extrusion sintering method, was found to be suitable for the filter element of the air purification system.

  • PDF

Effect of $UO_2$ Powder Property and Oxygen Potential on Sintering Characteristics of $UO_2-Gd_2O_3$ Fuel

  • Song, Kun-Woo;Kim, Keon-Sik;Yoo, Ho-Sik;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.128-139
    • /
    • 1998
  • The effect of UO$_2$ powder property and oxygen potential on characteristics of sintered UO$_2$-Gd$_2$O$_3$ fuel pellets has been investigated. Two types of powder, mixture of AUC-UO$_2$ and Gd$_2$O$_3$powders (type I) and mixture of ADU-UO$_2$ and Gd$_2$O$_3$powders (type II), have been prepared, pressed, and sintered at 168$0^{\circ}C$ for 4 hours. Four sintering atmospheres with different mixing ratios of $CO_2$to H$_2$ gas ranging from 0 to 0.3 have been used. UO$_2$-Gd$_2$O$_3$ fuel has lower sintered density than UO$_2$ fuel, and the density drop is larger for powder type I than for powder type II. As the oxygen potential increases, the sintered density of UO$_2$-2wt% Gd$_2$O$_3$pellets increases but that of UO$_2$-10wt% Gd$_2$O$_3$ pellets decreases. It is found that pores are newly formed in UO$_2$-10wt% Gd$_2$O$_3$ pellets in accordance with the decrease in density. The grain size of UO$_2$-Gd$_2$O$_3$ fuel increases and a short range G4 distribution becomes homogeneous as the oxygen potential increases. A long range ed distribution and grain structure are inhomogeneous for powder type II. The lattice parameter of (U,Gd)O$_2$solid solution decreases linearly with Gd$_2$O$_3$ content. The dependence of UO$_2$-Gd$_2$O$_3$fuel characteristics on powder type and sintering atmosphere have been discussed.

  • PDF

Sintered body characteristics of LAS by addition of CaCO3 and ZrO2 using a solid-state reaction (고상반응법을 이용한 LAS계의 CaCO3와 ZrO2 첨가에 따른 소결체 특성 연구)

  • Kim, Sang-Hun;Kang, Eun-Tae;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.218-224
    • /
    • 2011
  • LAS ($Li_2O-Al_2O_3-SiO_2$) ceramics were sintered by a solid-state reaction. $CaCO_3$ and $ZrO_2$ were added to the ${\beta}$-spodumene ($Li_2O-Al_2O_3-4SiO_2$) composition of the LAS system for enhancement of sintering behavior and mechanical strength, respectively. We have investigated the sintering characteristics, microstructures, mechanical properties and thermal expansion characteristics according to the change of the amount of additive and sintering temperature of the ${\beta}$-spodumene. At 0.1 mol% $CaCO_3$, the densification of ${\beta}$-spodumene was significantly improved. At 0.04 mol% $ZrO_2$, the strength of ${\beta}$-spodumene was also improved. For all the selected all compositions, the thermal expansion coefficient was measured by a dilatometer, which revealed 1.2 to $1.7{\times}10^6/^{\circ}C$.

Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics (Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성)

  • Cha, Yu-Joung;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Wu-Young;Kim, Dae-Joon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.

Characteristics of Large Green and Sintered Alumina Ceramics by Filter Pressing (필터 프레싱으로 제조한 대형 알루미나 세라믹스 성형체 및 소결체의 특성)

  • Lee, Hyun-Kwuon;Cho, Kyeong-Sik;Jang, Min-Hyeok;Jang, Chul-Woo;Kim, Sang-Mo;Kim, Mi-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.306-312
    • /
    • 2009
  • The size of various alumina ceramics used in semiconductor and display industry is also required to increase with increase in wafer and panel size. In this research, large alumina ceramics was fabricated by filter pressing of alumina slurry using commercial powder and thereafter sintering at $1600^{\circ}C$ in gas furnace. The characteristics of large alumina ceramics thereby were compared to those of small alumina ceramics prepared by pressure forming such as uniaxial pressing and CIP. Careful control of properties of alumina slurry and filter pressing made the fabrication of large alumina ceramics possible, and its characteristics were equivalent to those of small alumina ceramics. The large alumina ceramics, prepared by sintering the green body of 63% relative density at $1600^{\circ}C$, exhibited both dense microstructure corresponding to 98.5% of relative density and 99.8% of high purity as in starting powder.

Effect of SiO2, Al2O3, and Clay Additions on the Sintering Characteristics of Zircon (Silica, Alumnia, Clay를 첨가한 지르콘의 소결특성에 미치는 영향)

  • Lee, Keun-Bong;Jung, Seung-Hwa;Lee, Ju-Sung;Hong, Gyung-Pyo;Jo, Bum-Rae;Moon, Jong-Su;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.352-356
    • /
    • 2008
  • Effect The effect of sintering additives ($SiO_2$, $Al_2O_3$, Clay) on the mechanical characteristics of sintered zircon was investigated. 1 vol% of additives in zircon powder was was sintered at $120{\sim}1500^{\circ}C$, the mechanical characteristics were measured, and microstructure analysis were was conducted. $Al_2O_3$ and clay additions increase the formation of monoclinic and tetragonal-$ZrO_2$ formation. An addition of SiO2 addition suppressed the formation of tetragonal-$ZrO_2$ formation., The A specimen sintered at $1400^{\circ}C$ showed the a density of $4.05\;g/cm^3$ and the a microhardness of 1120 HV, respectively.

Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer using PNW-PMN-PZT Ceramics (PNW-PMN-PZT세라믹스를 이용한 윤곽진동모드 압전트랜스포머의 전기적특성)

  • 류주현;오동언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.602-608
    • /
    • 2002
  • In this study, microstructural and piezoelectric characteristics of PNW-PMN-PZT ceramics manufactured using attrition milling method were investigated. Sintering temperature of the ceramics was varied from $1080^{\circ}C$ to $1240^{\circ}C$. With increasing sintering temperature, dielectric constant increased. In the specimen sintered at $1120^{\circ}C$, electromechanical coupling factor(Kp) and density showed the maxinum values of 0.546 and 7.78[$g/\textrm{cm}^3$], respectively. In the specimen sintered at $1160^{\circ}C$, mechanical quality factor(Qm) also showed the maxinum value of 1,943. Contour vibration mode piezoelectric transformer with the size of $27.5{\times}27.5{\times}2.5mm$ using PNW-PMN-PZT ceramics was manufactured and its driving characteristics for T5 fluorescent lamp was investigated. Taking into consideration temperature rise of 6.8[$^{\circ}C$] and efficiency of 98.23%, it can be concluded that the transformer is suitable for driving the T5 fluorescent lamp.

Effects of CuO on Low-temperature Sintering Characteristics of PSN-PZT System Ceramics (CuO가 PSN-PZT세라믹스의 저온소결 특성에 미치는 영향)

  • 류주현;우원희;오동언;정영호;정광현;정문영;정회승
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1200-1204
    • /
    • 2003
  • In this study, in order to develop the low temperature sintering ceramics for multi-layer piezoelectric transformer, PSN-PZT system ceramics were manufactured as a function of CuO addition and their dielectric and piezoelectric characteristics were Investigated. CuO addition facilitated densification at low temperature due to the effect of Cu$_2$O-PbO liquid phase. Through the X-ray diffraction pattern study, absence of second phase unwanted was confirmed. Among the specimen to which CuO was added, the 0.6wt% CuO added specimen sintered at 900$^{\circ}C$ and 920$^{\circ}C$ showed the most excellent mechanical quality factor and electromechanical coupling factor, respectively. Besides the densification accelerator, CuO acted as a accepter and increased mechanical quality. Compared with the specimen with no addition sintered at 1150$^{\circ}C$ , the 0.6wt% CuO added specimen sintered at 920$^{\circ}C$ showed the appropriate dielectric and piezoelectric characteristics for multi-layer piezoelectric transformer.

Electrical Properties of Multilayer Chip Varistors in the Response Surface Analysis (반응표면분석법에 의한 적층 칩 바리스터의 전기적 특성)

  • Yoon, Jung-Rag;Jeong, Tae-Seok;Choi, Keun-Mook;Lee, Seok-Weon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.496-501
    • /
    • 2007
  • In order to enhance sintering characteristics on the $ZnO-Pr_6O_{11}$ based multilayer chip varistors (MLVs), a response surface analysis using central composite design method were carried out. As a result, varistor voltage($V_{1mA}$), nonlinear coefficient ($\alpha$), leakage current ($I_L$) and capacitance (C) were considered to be mainly affected by sintered temperature and holding time. MLVs sintered at $1200^{\circ}C$ and above $1200^{\circ}C$ revealed poor electrical characteristics, possibly due to the reaction between electrode materials(Pd) and $ZnO-Pr_6O_{11}$ based ceramics. On the sintering temperature range $1150{\sim}1175^{\circ}C$, nonlinear coefficient ($\alpha$) and leakage current ($I_L$) were shown to be $60{\sim}69$ and below $0.3{\mu}A$, respectively. In particular, MLVs sintered at $1175^{\circ}C$, 1.5 hr and $2^{\circ}C/hr$ (cooling speed) showed stable ESD(Electrical Static Discharge) characteristics under the condition of 10 times at 8 Kv with deviation varistor voltage, and deviation nonlinear coefficient were 0.3% and 0.33% (at positive), 0.55% (at negative), respectively.

Photoluminescence Characteristics of ZnGa2O4 Nano-phosphors by Combustion Method (연소합성법으로 제작한 ZnGa2O4 나노형광체의 광학적 특성)

  • Kim, Se-Jun;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.14-17
    • /
    • 2010
  • $ZnGa_2O_4$ powder were prepared by combustion method and $Mn^{2+}$ ions, a green luminescence activator, and $Cr^{3+}$ ions, a red luminescence activator were separately doped into $ZnGa_2O_4$. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various $ZnGa_2O_4$ peaks, with the (311) main peak, appeared at all sintering temperature XRD patterns. The PL specctrums of $ZnGa_2O_4$ powder showed main peak of 425 nm, and maximum intensity at the sintering temperature of $1200^{\circ}C$. SEM images shown that nano sized particles(about 200 nm) were of spherical shape. The characteristics of $ZnGa_2O_4$ containing 0.004 mol $Mn^{2+}$(505 nm, green) and $ZnGa_2O_4$ containg 0.002 mol $Cr^{3+}$ (696 nm, red) were shown to be the best.