• Title/Summary/Keyword: Sinogram

Search Result 30, Processing Time 0.022 seconds

Characterization Study of Detector Module with Crystal Array for Small Animal PET: Monte Carlo Simulation (소동물 전용 양전자방출단층시스템의 섬광체 배열에 따른 특성 평가: 몬테칼로 시뮬레이션 연구)

  • Baek, Cheol-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2015
  • The aim of this study is to perform simulations to design the detector module with crystal array by Monte Carlo simulation. For this purpose, a small animal PET scanner, employing module with 1~8 crystal array discrimination scheme, was designed. The proposed scanner has an inner diameter of 100 mm with detector modules in crystal array. Each module is composed of a 5.0 mm LSO crystal with a $2.0{\times}2.0mm^2$ sensitive area with a pitch 2.1 mm and 10.0 mm thickness. The LSO crystals are attached to the SiPM which has a dimension of $2.0{\times}2.0mm^2$. The detector module with crystal array of the designed PET detector was simulated using the Monte Carlo code GATE(Geant4 Application for Tomographic Emission). The detector is enough compensation for the loss of data in sinogram due to gaps between modules. The results showed that the high sensitivity and effectively reduced the problem about the missing data were greatly improved by using the detector module with 1 crystal array.

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

A Method of ISAR Geometric Calibration for Point Target Using Impulse-Radio UWB (임펄스 초광대역 레이다를 이용한 점표적의 ISAR 기하 보정 방법)

  • Yu, Jiwoong;Nikitin, Konstantin;Paek, Inchan;Jang, Jong Hun;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • In this paper, a method of ISAR geometric calibration is represented by using impulse-radio UWB radar. The ir-UWB is good for using a signal processing in time domain, so, it does not occur a multi-path or coupling problem. If a signal that between antennas and target is assumed a plane wave, a center of rotation in ISAR geometry model can be estimated by using point target. Before image is reconstructed with sinogram, the center of rotation can be calculated by using least square fitting. This method can be obtained a more contrast image, and a maximum value of entropy of image. The method, that estimates a center of rotation in received data, will be used a initial setup of instruments or a periodic compensation to reconstruct image. It would be useful in medical, security and surveillance imaging equipments that have a fixed geometry.

Evaluation of Physical Correction in Nuclear Medicine Imaging : Normalization Correction (물리적 보정된 핵의학 영상 평가 : 정규화 보정)

  • Park, Chan Rok;Yoon, Seok Hwan;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Purpose In this study, we evaluated image by applying normalization factor during 30 days to the PET images. Materials and Methods Normalization factor was acquired during 30 days. We compared with 30 normalization factors. We selected 3 clinical case (PNS study). We applied for normalization factor to PET raw data and evaluated SUV and count (kBq/ml) by drawing ROI to liver and lesion. Results There is no significant difference normalization factor. SUV and count are not different for PET image according to normalization factor. Conclusion We can get a lot of information doing the quality assurance such as performance of sinogram and detector. That's why we need to do quality assurance daily.

  • PDF

Application of sigmoidal optimization to reconstruct nuclear medicine image: Comparison with filtered back projection and iterative reconstruction method

  • Shin, Han-Back;Kim, Moo-Sub;Law, Martin;Djeng, Shih-Kien;Choi, Min-Geon;Choi, Byung Wook;Kang, Sungmin;Kim, Dong-Wook;Suh, Tae Suk;Yoon, Do-Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.258-265
    • /
    • 2021
  • High levels for noise and a loss of true signal make the quantitative interpretation of nuclear medicine (NM) images difficult. An application of profile optimization using a sigmoidal function in this study was used to acquire the NM images with high quality. And the images were acquired by using three kinds of reconstruction method using each same sinogram: a standard filtered back-projection (FBP), an iterative reconstruction (IR) technique, and the sigmoidal function profile optimization (SFPO). Comparison of image according to reconstruction method was performed to show a superiority of the SFPO for imaging. The images reconstructed by using the SFPO showed an average of 1.49 times and of 1.17 times better in contrast than the results obtained using the standard FBP and the IR technique, respectively. Higher signal to noise ratios were obtained as an average of 12.30 times and of 3.77 times than results obtained using the standard FBP and the IR technique, respectively. This study confirms that reconstruction with SFPO (vs FBP and vs IR) can lead to better lesion detectability and characterization with noise reduction. It can be developed for future reconstruction technique for the NM imaging.

Evaluation for Optimization of CT Dose Reduction Methods in PET/CT (PET/CT 검사 시 CT 피폭선량 감소 방법들의 최적화 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Purpose Various methods for reducing radiation exposure have been continuously being developed. The aim of this study is to evaluate effectiveness of dose reduction, image quality and PET SUV changes by applying combination of automatic exposure dose(AEC), automated dose-optimized selection of X-ray tube voltage(CAREkV) and sinogram affirmed iterative reconstruction(SAFIRE) which can be controled by user. Materials and Methods Torso, AAPM CT performance and IEC body phantom images were acquired using biograph mCT64, (Siemens, Germany) PET/CT scanner. Standard CT condition was 120 kV, 40 mAs. Radiation exposure and noise were evaluated by applying AEC, CAREkV(120 kV, 40 mAs) and SAFIRE(120 kV, 25 mAs) with torso phantom compare to standard CT condition. And torso, AAPM and IEC phantom images were acquired with combination of 3 methods in condition of 120 kV, 25 mAs to evaluate radiation exposure, noise, spatial resolution and SUV changes. Results When applying AEC, CTDIvol and DLP were decreased by 50.52% and 50.62% compare to images which is not applying AEC. mAs was increased by 61.5% to compensate image quality according to decreasing 20 kV when applying CAREkV. However, CTDIvol and DLP were decreased by 6.2% and 5.5%. When reference mAs was the lower and strength was the higher, reduction of radiation exposure rate was the bigger. Mean SD and DLP were decreased by 2.2% and 38% when applying SAFIRE even though mAs was decreased by 37.5%(from 40 mAs to 25 mAs). Combination of 3 methods test, SD decreased by 5.17% and there was no significant differences in spatial resolution. And mean SD and DLP were decreased by 6.7% and 36.9% compare to 120 kV, 40 mAs with AEC. For SUV test, there was no statistical differences(P>0.05). Conclusion Combination of 3 methods shows dose reduction effect without degrading image quality and SUV changes. To reduce radiation exposure in PET/CT study, continuous effort is needed by optimizing various dose reduction methods.

  • PDF

Evaluation of Image Quality Change by Truncated Region in Brain PET/CT (Brain PET에서 Truncated Region에 의한 영상의 질 평가)

  • Lee, Hong-Jae;Do, Yong-Ho;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.68-73
    • /
    • 2015
  • Purpose The purpose of this study was to evaluate image quality change by truncated region in field of view (FOV) of attenuation correction computed tomography (AC-CT) in brain PET/CT. Materials and Methods Biograph Truepoint 40 with TrueV (Siemens) was used as a scanner. $^{68}Ge$ phantom scan was performed with and without applying brain holder using brain PET/CT protocol. PET attenuation correction factor (ACF) was evaluated according to existence of pallet in FOV of AC-CT. FBP, OSEM-3D and PSF methods were applied for PET reconstruction. Parameters of iteration 4, subsets 21 and gaussian 2 mm filter were applied for iterative reconstruction methods. Window level 2900, width 6000 and level 4, 200, width 1000 were set for visual evaluation of PET AC images. Vertical profiles of 5 slices and 20 slices summation images applied gaussian 5 mm filter were produced for evaluating integral uniformity. Results Patient pallet was not covered in FOV of AC-CT when without applying brain holder because of small size of FOV. It resulted in defect of ACF sinogram by truncated region in ACF evaluation. When without applying brain holder, defect was appeared in lower part of transverse image on condition of window level 4200, width 1000 in PET AC image evaluation. With and without applying brain holder, integral uniformities of 5 slices and 20 slices summation images were 7.2%, 6.7% and 11.7%, 6.7%. Conclusion Truncated region by small FOV results in count defect in occipital lobe of brain in clinical or research studies. It is necessary to understand effect of truncated region and apply appropriate accessory for brain PET/CT.

  • PDF

Linearity Estimation of PET/CT Scanner in List Mode Acquisition (List Mode에서 PET/CT Scanner의 직선성 평가)

  • Choi, Hyun-Jun;Kim, Byung-Jin;Ito, Mikiko;Lee, Hong-Jae;Kim, Jin-Ui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.86-90
    • /
    • 2012
  • Purpose: Quantification of myocardial blood flow (MBF) using dynamic PET imaging has the potential to assess coronary artery disease. Rb-82 plays a key role in the clinical assessment of myocardial perfusion using PET. However, MBF could be overestimated due to the underestimation of left ventricular input function in the beginning of the acquisition when the scanner has non-linearity between count rate and activity concentration due to the scanner dead-time. Therefore, in this study, we evaluated the count rate linearity as a function of the activity concentration in PET data acquired in list mode. Materials & methods: A cylindrical phantom (diameter, 12 cm length, 10.5 cm) filled with 296 MBq F-18 solution and 800 mL of water was used to estimate the linearity of the Biograph 40 True Point PET/CT scanner. PET data was acquired with 10 min per frame of 1 bed duration in list mode for different activity concentration levels in 7 half-lives. The images were reconstructed by OSEM and FBP algorithms. Prompt, net true and random counts of PET data according to the activity concentration were measured. Total and background counts were measured by drawing ROI on the phantom images and linearity was measured using background correction. Results: The prompt count rates in list mode were linearly increased proportionally to the activity concentration. At a low activity concentration (<30 kBq/mL), the prompt net true and random count rates were increased with the activity concentration. At a high activity concentration (>30 kBq/mL), the increasing rate of the prompt net true rates was slightly decreased while the increasing rate of random counts was increased. There was no difference in the image intensity linearity between OSEM and FBP algorithms. Conclusion: The Biograph 40 True Point PET/CT scanner showed good linearity of count rate even at a high activity concentration (~370 kBq/mL).The result indicates that the scanner is useful for the quantitative analysis of data in heart dynamic studies using Rb-82, N-13, O-15 and F-18.

  • PDF

List-event Data Resampling for Quantitative Improvement of PET Image (PET 영상의 정량적 개선을 위한 리스트-이벤트 데이터 재추출)

  • Woo, Sang-Keun;Ju, Jung Woo;Kim, Ji Min;Kang, Joo Hyun;Lim, Sang Moo;Kim, Kyeong Min
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.309-316
    • /
    • 2012
  • Multimodal-imaging technique has been rapidly developed for improvement of diagnosis and evaluation of therapeutic effects. In despite of integrated hardware, registration accuracy was decreased due to a discrepancy between multimodal image and insufficiency of count in accordance with different acquisition method of each modality. The purpose of this study was to improve the PET image by event data resampling through analysis of data format, noise and statistical properties of small animal PET list data. Inveon PET listmode data was acquired as static data for 10 min after 60 min of 37 MBq/0.1 ml $^{18}F$-FDG injection via tail vein. Listmode data format was consist of packet containing 48 bit in which divided 8 bit header and 40 bit payload space. Realigned sinogram was generated from resampled event data of original listmode by using adjustment of LOR location, simple event magnification and nonparametric bootstrap. Sinogram was reconstructed for imaging using OSEM 2D algorithm with 16 subset and 4 iterations. Prompt coincidence was 13,940,707 count measured from PET data header and 13,936,687 count measured from analysis of list-event data. In simple event magnification of PET data, maximum was improved from 1.336 to 1.743, but noise was also increased. Resampling efficiency of PET data was assessed from de-noised and improved image by shift operation of payload value of sequential packet. Bootstrap resampling technique provides the PET image which noise and statistical properties was improved. List-event data resampling method would be aid to improve registration accuracy and early diagnosis efficiency.

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.