DOI QR코드

DOI QR Code

Characterization Study of Detector Module with Crystal Array for Small Animal PET: Monte Carlo Simulation

소동물 전용 양전자방출단층시스템의 섬광체 배열에 따른 특성 평가: 몬테칼로 시뮬레이션 연구

  • 백철하 (동서대학교 방사선학과)
  • Received : 2014.12.11
  • Accepted : 2015.03.04
  • Published : 2015.04.28

Abstract

The aim of this study is to perform simulations to design the detector module with crystal array by Monte Carlo simulation. For this purpose, a small animal PET scanner, employing module with 1~8 crystal array discrimination scheme, was designed. The proposed scanner has an inner diameter of 100 mm with detector modules in crystal array. Each module is composed of a 5.0 mm LSO crystal with a $2.0{\times}2.0mm^2$ sensitive area with a pitch 2.1 mm and 10.0 mm thickness. The LSO crystals are attached to the SiPM which has a dimension of $2.0{\times}2.0mm^2$. The detector module with crystal array of the designed PET detector was simulated using the Monte Carlo code GATE(Geant4 Application for Tomographic Emission). The detector is enough compensation for the loss of data in sinogram due to gaps between modules. The results showed that the high sensitivity and effectively reduced the problem about the missing data were greatly improved by using the detector module with 1 crystal array.

본 연구의 목적은 몬테칼로 모사방법을 이용하여 소동물 전용 양전자방출단층촬영 시스템의 모듈 내 섬광체 배열 수에 따른 특성평가를 하는 것이다. 이 연구에서 제안한 소 동물 전용 양전자방출단층촬영 시스템은 모듈 내 섬광체 수를 1 ~ 8개로 구성하였으며, 섬광체 크기는 $2.0{\times}2.0{\times}10.0mm^3$ 크기의 LSO섬광결정을 사용하였고 스캐너의 직경은 100 mm로 설계하였다. 몬테칼로 시뮬레이션 방법중에 하나인GATE 코드를 이용하여 선원은 511 keV 점선원을 이용하였으며 동시계수 측정된 좌표값을 이용하여 민감도 및 사이노그램을 획득하였다. 모듈 내 섬광체 수가 적을수록 모듈 별 틈새가 줄어들어 민감도가 향상되는 결과를 보였으며, 사이노그램 결과에서도 불완전한 데이터(missing data)가 발생하지 않는 것을 알 수 있었다. 이 연구 결과는 모듈 안 섬광체 수가 적을수록 민감도 향상 및 불완전한 데이터 획득이 줄어드는 것을 증명함으로써, 소동물 전용 양전자방출단층촬영 시스템의 성능 개선을 위한 새로운 접근법을 제시한다.

Keywords

References

  1. Y. H. Chung, T. Y. Song, and C Choi, "Nuclear Medicine imaging instrumentations for molecular imaging," Kor. J. Nucl. Med. Vol.38, No.2, pp.131-139, 2004.
  2. Y. C. Tai and R. Laforest, "Instrumentation aspects of animal PET," Annu Rev Biomed Eng, Vol.7, pp.255-285, 2005 https://doi.org/10.1146/annurev.bioeng.6.040803.140021
  3. A. Vandenbroucke, A. Foudray, P. Olcott, and C. S. Levin, "Performance characterization of a new high resolution PET scintillation detector," Phys. Med & Biol, Vol.55, No.19, pp.5895-5911, 2010. https://doi.org/10.1088/0031-9155/55/19/018
  4. S. Ha, S. Matej, M. Ispiryan, and K. Mueller, "GPU Accelerated Forward and Back-Projections With Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction," IEEE Trans Nucl Sci, Vol.60, No.1, pp.166-173, 2013. https://doi.org/10.1109/TNS.2012.2233754
  5. A. Kishimoto, J. Kataoka, T. Kato, T. Miura, T. Nakamori, K. Kamada, K. Sato, Y. Ishikawa, K. Yamamura, N. Kawabata, and S. Yamamoto, "Development of a Dual-Sided Readout DOI-PET Module Using Large-Area Monolithic MPPC-Arrays," IEEE Trans Nucl Sci, Vol.60, No.1, pp.38-43, 2013. https://doi.org/10.1109/TNS.2012.2233215
  6. L. A. Shepp and Y. Vardi, "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imaging, Vol.1, No.2, pp.113-122, 1982. https://doi.org/10.1109/TMI.1982.4307558
  7. H. M. Hudson and R. S. Rarkin, "Accelerated Image Reconstruction using Ordered Subsets of Projection Data," IEEE Trans Med Img, Vol.13, No.4, pp.394-398, 1994
  8. G.A. Kastis, A. Gaitanis, Y. Fernandez, G. Kontaxakis, and A. Fokas., Evaluation of a spline reconstruction technique: Comparison with FBP, MLEM and OSEM, 2010 IEEE NSSMIC, pp.3282-3287, 2010
  9. D. S. Kim, H. J. Yoo, D. O. Shim, and H. J. Yu, "The Evaluation of Reconstructed Images in 3D OSEM Accoring to Iteration and Subset Number," J Nucl Med Technol, Vol.15, No.1, pp.17-24, 2011
  10. H. Baghaei, H. Li, J. Uribe, Y. Wang, and W. H. Wong, "Compensation of missing projection data for MDAPET camera," IEEE Nucl. Sci. Symp. and Med. Imag. Conf., 2000.
  11. R. Buchert, K. H. Bohuslavizki, J. Meste, T. Sera, and C. Blechmann, "Quality Assurance in PET: Evaluation of the Clinical Relevance of Detector Defects," J. Nucl. Med., Vol.40, No.10, pp.1657-1665, 1999.
  12. R. Redus, J. S. Gordon, and P. Bennett, "An imaging nuclear survey system," IEEE Trans. Nucl. Sci., Vol.43, No.3, pp.1827-1831, 1996. https://doi.org/10.1109/23.507230
  13. H. W. A. M. de Jong, R. Boellaard, C. Knoess, M. Lenox, C. Michel, M. Casey, and A. A. Lammertsma, "Correction methods for missing data in sinograms of the HRRT PET scanner," IEEE Trans. Med. Imag., Vol.50, No.5, pp.1452-1456, Oct. 2003.
  14. J. S. Karp, G. Muehllehner, and R. M. Lewitt, "Constrained Fourier space method for compensation of missing data in emission computed tomography," IEEE Trans. Med. Imag., Vol.7, No.1, pp.21-25, 1988.
  15. A. Del Guerra, N. Belcari, M. Giuseppina Bisogni, G. LLosa, S. Marcatili, G. Ambrosi, F. Corsi, C. Marzocca, G. Galla, and C. Piemonte, Advantages and pitfalls of the silicon photomultiplier (SiPM) as photodetector for the next generation of PET scanners, Nucl. Instrum. Methods Phys Res A, Vol.617, No.1/3, pp.223-226, 2010. https://doi.org/10.1016/j.nima.2009.09.121
  16. J. Y. Yeom, R. Vinke, and C. S. Levin, "Optimizing timing performance of silicon photomultiplier-based scintillation detectors," Phys Med Biol, Vol.58, No.4, pp.1207-1220, 2013. https://doi.org/10.1088/0031-9155/58/4/1207
  17. J. H. Jung, Y. Choi, K. J. Hong, J. Kang, W. Hu, K. H. Lim, Y. Huh, S. Kim, J. Jung, and B. Kim, "Development of brain PET using GAPD arrays," Med Phys, Vol.39, No.3, pp.1227-1233, 2012. https://doi.org/10.1118/1.3681012
  18. S. Jan, G. Santin, D. Strul, S. staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, B. Breton, P. Bruyndonckx, I. Bubat, A. F. Chatziioannou, Y. Choi, Y. H Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, M. Koole, and M. Krieguer, "GATE: a simulation toolkit for PET and SPECT," Phys. Med. Biol., Vol.49, pp.4543-4561, 2004. https://doi.org/10.1088/0031-9155/49/19/007
  19. S. Staelens1, D. Strul, G. Santin, S. Vandenberghe, M. Koole, Y. Asseler, I. Lemahieu, and R. Van de Walle., "Monte Carlo simulations of a scintillation camera using GATE: validation and application modeling," phys. Med. Biol., Vol.34, pp.1026-1036, 2007.
  20. C. H. Baek, S. J. Lee, and Y. H. Chung, "Coded Aperture Gamma Camera for Thyroid Imaging: Monte Carlo Simulation," Kor. J. Med. Phy., Vol.19, No.4, pp.247-255, 2008.
  21. M. E. Phelps, "PET: Molecular Imaging and Its Biological applications," Springer-Verlag New York, Inc., pp.38-48, 2004.