• Title/Summary/Keyword: Sink Nodes

Search Result 311, Processing Time 0.023 seconds

Real-Time Sink Node Architecture for a Service Robot Based on Active Healthcare/Living-support USN (능동 건강/생활지원 USN 기반 서비스 로봇 시스템의 실시간 싱크 노드 구조)

  • Shin, Dong-Gwan;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.720-725
    • /
    • 2008
  • This paper proposes a system architecture for USN with a service robot to provide more active assisted living services for elderly persons by monitoring their mental and physical well-being with USN environments at home, hospital, or silver town. Sensors embedded in USN are used to detect preventive measures for chronic disease. Logged data are transferred to main controller of a service robot via wireless channel in which the analysis of data is performed. For the purpose of handling emergency situations, it needs real-time processing on gathering variety sensor data, routing algorithms for sensor nodes to a moving sink node and processing of logged data. This paper realized multi-hop sensor network to detect user movements with biometric data transmission and performed algorithms on Xenomai, a real-time embedded Linux. To leverage active sensing, a mobile robot is used of which task was implemented with a priority to process urgent data came from the sink-node. This software architecture is anticipated to integrate sensing, communication and computing with real-time manner. In order to verify the usefulness of a proposed system, the performance of data transferring and processing on a real-time OS with non real-time OS is also evaluated.

A Short Path Data Routing Protocol for Wireless Sensor Network (단거리 데이터 전달 무선 센서네트워크 라우팅 기법)

  • Ahn, Kwang-Seon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.395-402
    • /
    • 2007
  • Wireless sensor networks have many sensor nodes which response sudden events in a sensor fields. Some efficient routing protocol is required in a sensor networks with mobile sink node. A data-path template is offered for the data announcement and data request from source node and sink node respectively. Sensed data are transferred from source node to sink node using short-distance calculation. Typical protocols for the wireless networks with mobile sink are TTDD(Two-Tier Data Dissemination) and CBPER(Cluster-Based Power-Efficient Routing). The porposed SPDR(Short-Path Data Routing) protocol in this paper shows more improved energy efficiencies from the result of simulations than the typical protocols.

Adjusting Cluster Size for Alleviating Network Lifetime in Wireless Sensor Network (무선 센서네트워크에서 네트워크 수명 연장을 위한 클러스터 크기 조정 알고리즘)

  • Kwak, Tae-Kil;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1201-1206
    • /
    • 2007
  • In this paper, we propose an algorithm that improve network lifetime by adjusting cluster size according to location information of sensor node in wireless sensor network (WSN) using clustering algorithm. The collected sensing information by sensor nodes in each cluster are transferred to sink node using inter-cluster communications method. Cluster head (CH) that located nearby sink node spend much more energy than those of far from sink node, because nearer CH forwards more data, so network lifetime has a tendency to decrease. Proposed algorithm minimizes energy consumption in adjacent cluster to sink node by decreasing cluster size, and improve CH lifetime by distributing transmission paths. As a result of mathematical analysis, the proposed algorithm shows longer network lifetime in WSN.

Directional Messsging Scheme for considering Nodes Energy Consumption in Sensor Networks (센서 네트워크에서 노드의 에너지 소비를 고려한 방향성 메시지 기법)

  • Jeon, Jin-Hwan;Jeong, Eun-Joo;Park, Sang-Joon;Khil, A-Ra;Kim, Byung-Gi
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.55-64
    • /
    • 2007
  • The sensor nodes on the sensor network transmit the reply for the queries of ADV(Advertisement) message from sink node, and the sink node presents the received information to users. To find the relevant sensor nodes, routing algorithms disseminates ADV messages to the whole network. Thus not only the relevant sensor nodes but also the irrelevant ones consume considerable amount of energy. To alleviate such kind of energy consumption, this thesis proposes a new routing algorithm and coins it Directed Messaging. It propagates ADV message only to the limited direction and changes the direction until the requested sensor node is found. In this way, Directed Messaging reduces unnecessary energy consumption and enhance the efficiency of the networks. Performance of the Directed Messaging algorithm is evaluated through simulation and compared with Directed Diffusion algorithm. Simulation results show that it has better performance than Directed Diffusion.

  • PDF

An Attribute-Based Naming Architecture for Wireless Sensor Networks (무선 센서 네트워크를 위한 속성 기반 네이밍 구조)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.95-102
    • /
    • 2007
  • Recently, a lot of researchers focus on the sensor middleware that hide the complexity of application developments and provide the abstraction of functions to upper application layer. Although there we several factors to design sensor middleware, the attribute-based naming is considered to be an essential factor among them. However, most existing researches were not designed to reflect the characteristics of sensor networks and have the limitation of attribute-based query extension. This study adopts the concept of Virtual Counterpart to suggest the structure there attribute-based naming is supported by virtual sensor nodes of the middleware on the sink node. Unlike traditional data-centric middleware in which individual sensor nodes process attribute-based query, virtual sensor nodes mapped to physical sensor nodes are running on the middleware of the sink node and process attribute-based query as a proxy of the physical sensor. This approach enables attribute-based naming independent of physical infrastructure and easy extensibility.

  • PDF

An Energy-Efficient Data-Centric Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 데이터 중심 라우팅 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2187-2192
    • /
    • 2016
  • A data-centric routing protocol considering a data aggregation technique at relay nodes is required to increase the lifetime of wireless sensor networks. An energy-efficient data-centric routing algorithm is proposed by considering a tradeoff between acquisition time and energy consumption in the wireless sensor network. First, the proposed routing scheme decides the sink node among all sensor nodes in order to minimize the maximum distance between them. Then, the proposed routing extends its tree structure in a way to minimize the link cost between the connected nodes for reducing energy consumption while minimizing the maximum distance between sensor nodes and a sink node for rapid information gathering. Simulation results show that the proposed data-centric routing algorithm has short information acquisition time and low energy consumption; thus, it achieves high energy efficiency in the wireless sensor network compared to conventional routing algorithms.

An Energy-Efficient and Destination-Sequenced Routing Algorithm by a Sink Node in Wireless Sensor Networks (무선 센서 네트워크에서의 싱크 노드에 의한 에너지 효율적인 목적지-순서적 라우팅 알고리즘)

  • Jung, Sang-Joon;Chung, Youn-Ky
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1347-1355
    • /
    • 2007
  • A sensor network is composed of a large number of tiny devices, scattered and deployed in a specified regions. Each sensing device has processing and wireless communication capabilities, which enable it to gather information from the sensing area and to transfer report messages to a base station. The energy-efficient routing paths are established when the base station requests a query, since each node has several characteristics such as low-power, constrained energy, and limited capacity. The established paths are recovered while minimizing the total transmit energy and maximizing the network lifetime when the paths are broken. In this paper, we propose a routing algorithm that each sensor node reports its adjacent link information to the sink node when a sink node broadcasts a query. The sink node manages the total topology and establishes routing paths. This algorithm has a benefit to find an alternative path by reducing the negotiating messages for establishing paths when the established paths are broken. To reduce the overhead of collection information, each node has a link information before reporting to the sink. Because the node recognizes which nodes are adjacent. The proposed algorithm reduces the number of required messages, because sensor nodes receive and report routing messages for establishment at the beginning of configuring routing paths, since each node keeps topology information to establish a routing path, which is useful to report sensing tasks in monitoring environments.

  • PDF

An Energy-Efficient Routing Protocol based on Static Grid in Wireless Sensor Networks (무선 센서 네트워크에서 정적 그리드 기반의 에너지 효율적 라우팅 프로토콜)

  • Choi, Jae-Min;Mun, Hyung-Jin;Jeong, Yoon-Su;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.791-800
    • /
    • 2010
  • Recently wireless sensor networks as a field of ubiquitous computing technology was in the limelight. To use and collect the necessary information, Sink node mobility is essential. TTDD(Two-Tier Data Dissemination) proposed most common technique associated with Mobile sink node in wireless sensor networks, but issues exist that the use of many control packet falls into the energy efficiency. The technique for solving problems is Cluster-Based Energy-efficient Routing protocol (CBPER). But CBPER does not transmit the data correctly to sink node or source node. In this paper, we propose An Energy-Efficient Routing Protocol based on Static Grid using mobile sink nodes in order to solve the data transmission failure and reduce the energy consumption in Wireless Sensor Networks. We have evaluated it with the NS-2 simulator. Our results show that the proposed protocol saves the energy consumption up to 34% in comparison with CBPER. We also prove that the proposed protocol can transmit more accurate data to the sink de than CBPER.

Cluster-based Energy-aware Data Sharing Scheme to Support a Mobile Sink in Solar-Powered Wireless Sensor Networks (태양 에너지 수집형 센서 네트워크에서 모바일 싱크를 지원하기 위한 클러스터 기반 에너지 인지 데이터 공유 기법)

  • Lee, Hong Seob;Yi, Jun Min;Kim, Jaeung;Noh, Dong Kun
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1430-1440
    • /
    • 2015
  • In contrast with battery-based wireless sensor networks (WSNs), solar-powered WSNs can operate for a longtime assuming that there is no hardware fault. Meanwhile, a mobile sink can save the energy consumption of WSN, but its ineffective movement may incur so much energy waste of not only itself but also an entire network. To solve this problem, many approaches, in which a mobile sink visits only on clustering-head nodes, have been proposed. But, the clustering scheme also has its own problems such as energy imbalance and data instability. In this study, therefore, a cluster-based energy-aware data-sharing scheme (CE-DSS) is proposed to effectively support a mobile sink in a solar-powered WSN. By utilizing the redundant energy efficiently, CE-DSS shares the gathered data among cluster-heads, while minimizing the unexpected black-out time. The simulation results show that CE-DSS increases the data reliability as well as conserves the energy of the mobile sink.

Communication Protocol to Support Mobile Sinks by Multi-hop Clusters in Wireless Sensor Networks (무선 센서 네트워크에서 멀티-홉 클러스터를 통한 이동 싱크 지원 통신 프로토콜)

  • Oh, Seung-Min;Jung, Ju-Hyun;Lee, Jeong-Cheol;Park, Ho-Sung;Yim, Yong-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • In wireless sensor networks(WSNs), the studies that support sink mobility without global position information exploit a Backbone-based Virtual Infrastructure (BVI) which considers one-hop clusters and a backbone-based tree. Since the clusters of a sink and a source node are connected via flooding into the infrastructure, it causes high routing cost. Although the network could reduce the number of clusters via multi-level clusters, if the source nodes exist at nearest clusters from the cluster attached by the sink and they are in different branches of the tree, the data should be delivered via detour paths on the tree. Therefore, to reduce the number of clusters, we propose a novel multi-hop cluster based communication protocol supporting sink mobility without global position information. We exploit a rendezvous cluster head for sink location service and data dissemination but the proposed protocol effectively reduces data detour via comparing cluster hops from the source. Simulation shows that the proposed protocol is superior to the existing protocols in terms of the data delivery hop counts.