• Title/Summary/Keyword: Singularity Problem

Search Result 164, Processing Time 0.019 seconds

Analysis of a Complete Contact Problem in Bonded Condition: Comparison of Experimental-Numerical Analyses and Theoretical Solutions (응착조건의 완전접촉문제 해석: 실험 및 수치해석과 이론해의 비교)

  • Kim, Hyung-Kyu;Jang, Jae-Won;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Asymptotic method has been often used to theoretically analyze the complete contact problem. The error of the asymptotic results increases as the distance from the contact edge increases. The singularity cannot be properly obtained from a finite element (FE) analysis owing to the finiteness of the element size. In the present work, the complete contact problem in bonded condition is analyzed using a combined experimental-numerical approach to assist and/or compare with the asymptotic results. Al and Cu alloys are used for the material combination of the punch and substrate. 120 and 135 degrees are used for the punch angle. The FE models are validated by comparison of displacement distributions obtained by the FE analysis and $moir{\acute{e}}$ experiment. Generalized stress intensity factors are evaluated using the validated FE models. Stress field in the vicinity of the sharp contact edges obtained from the FE and asymptotic analyses are compared. The discrepancies are also discussed.

A Study on High Agile Satellite Maneuver through Sequential Activation of Control Moment Gyros and Reaction Wheels (제어모멘트자이로와 반작용휠의 순차적 사용을 통한 위성 고기동 연구)

  • Son, Jun-Won;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.18-28
    • /
    • 2014
  • We assume that two control moment gyros are installed for space qualification in a satellite with four reaction wheels, and study the high agile maneuver method. Using high torque control moment gyros, we reduce the satellite's attitude error. After that, we activate reaction wheels to control remaining attitude error. This proposed method can avoid singularity problem of control moment gyros, and do not require gimbals' angle to calculate torque command. Through numerical simulations, we show that our method's agile performance is similar to previous method and reduce the reaction wheels' required momentum.

Analysis of stress and stress intensity factor in bonded dissimilar materials by boundary element method (경계요소법을 이용한 이종재료 접착.접합재의 응력 및 응력세기계수 해석)

  • Yi, W.;Chung, N.Y.;Yu, Y.C.;Jeong, E.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1357-1363
    • /
    • 1997
  • Currently it is increasing to use th bonded dissimilar materials in the various field of advanced engineering such as the highly rigid and lighter vehicle, plastic molding LSI package and metal/ceramic bonded joint. In spite of such a wide application of the bonded dissimilar materials, the evaluation method of the bonding strength has not been established yet. Therefore in this paper we analyze the interface crack problem by introducing fracture mechanics parameters as the basic research about estimating of the strength of adhesive joints. The variation of stress intensity factor according to the elastic modulus of adherend and thickness of bonded layer are investigated. Numerical results are based on the results of boundary element analysis of four different type butt joints subjected to uniaxial tension loading.

Cancer-Subtype Classification Based on Gene Expression Data (유전자 발현 데이터를 이용한 암의 유형 분류 기법)

  • Cho Ji-Hoon;Lee Dongkwon;Lee Min-Young;Lee In-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1172-1180
    • /
    • 2004
  • Recently, the gene expression data, product of high-throughput technology, appeared in earnest and the studies related with it (so-called bioinformatics) occupied an important position in the field of biological and medical research. The microarray is a revolutionary technology which enables us to monitor several thousands of genes simultaneously and thus to gain an insight into the phenomena in the human body (e.g. the mechanism of cancer progression) at the molecular level. To obtain useful information from such gene expression measurements, it is essential to analyze the data with appropriate techniques. However the high-dimensionality of the data can bring about some problems such as curse of dimensionality and singularity problem of matrix computation, and hence makes it difficult to apply conventional data analysis methods. Therefore, the development of method which can effectively treat the data becomes a challenging issue in the field of computational biology. This research focuses on the gene selection and classification for cancer subtype discrimination based on gene expression (microarray) data.

Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law (슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계)

  • Lee, JunKu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

On variable bandwidth Kernel Regression Estimation (변수평활량을 이용한 커널회귀함수 추정)

  • Seog, Kyung-Ha;Chung, Sung-Suk;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.179-188
    • /
    • 1998
  • Local polynomial regression estimation is the most popular one among kernel type regression estimator. In local polynomial regression function esimation bandwidth selection is crucial problem like the kernel estimation. When the regression curve has complicated structure variable bandwidth selection will be appropriate. In this paper, we propose a variable bandwidth selection method fully data driven. We will choose the bandwdith by selecting minimising estiamted MSE which is estimated by the pilot bandwidth study via croos-validation method. Monte carlo simulation was conducted in order to show the superiority of proposed bandwidth selection method.

  • PDF

Finite Element Solution of Helmholtz Equation for Free Harbor Oscillation (항만 고유 진동 해석을 위한 Helmholtz 방정식의 유한요소 해법)

  • Ryu, Yeon Sun;Lee, Byung Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • For the numerical analysis of free oscillation characteristics in a harbor with general boundary and bottom topography, finite element method is applied. The governing Helmholtz equation is transformed into a generalized matrix eigenvalue problem using the standard finite element procedure. A computer code is developed for the numerical evaluation of natural frequencies and free oscillation modes. In the eigensolution process, a shifting strategy is devised for the treatment of numerical singularity. Scaling of coefficient matrix is also found to be effective for the alleviation of numerical ill-conditioning. For the test problems, firstly, analytical and numerical solutions are compared and validity of the code is obtained. Hence the method is successfully applicable for the real-world problems with general geometric boundaries and bottom topography.

  • PDF

Analysis of cracks emanating from a circular hole in an orthotropic infinite plate (直交 異方性 無限平版 內部의 圓孔周圍 龜裂 解析)

  • 정성균;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.895-903
    • /
    • 1987
  • This paper investigates the problem of cracks emanating from a circular hole in an orthotropic infinite plate. The mixed-mode stress intensity factors are obtained by using the modified mapping-collocation method. To investigate the effect of anisotropy and circular hole boundary on crack tip singularity, stress intensity factors are considered as functions of the normalized crack length for various types of laminated composite. The results indicate a strong dependence of the stress intensity factor on the material anisotropy and geometry.

A Study on Kinematics Analysis and Motion Control of Humanoid Robot Arm with Eight Joints (휴머노이드 로봇 관절 아암의 운동학적 해석 및 모션제어에 관한 연구)

  • Jung, Yang-Geun;Lim, O-Duek;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • This study proposes a new approach to Control and trajectory generation of a 8 DOF human robot arm with computational complexity and singularity problem. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of research, we propose an analytical kinematics algorithm for a 8 DOF bipped dual robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regarding to the end-effector pose. Performance of the proposed algorithm was verified by simulation test with various conditions. It has been verified that the trajectory planning using this algorithm.

Adaptive Tracking Control for Spacecraft Rendezvous and Docking (우주비행체의 랑데부 및 도킹을 위한 적응 제어기법)

  • Yoon, Hyung-Joo;Shin, Hyo-Sang;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1072-1078
    • /
    • 2008
  • An adaptive control algorithm for spacecraft rendezvous and docking in a Keplerian orbit is presented. The equations of relative motion of two spacecrafts expressed in a local-vertical-local-horizontal rectangular frame are converted to a general Hamiltonian form, then an adaptive control method developed for the uncertain Hamiltonian system is applied to the rendezvous and docking problem. A smooth projection algorithm is applied to keep the parameter estimates inside a singularity-free region, and a numerical example shows that the developed controller successfully deals with the unknown mass of the chaser spacecraft.