• Title/Summary/Keyword: Singular value

Search Result 569, Processing Time 0.027 seconds

A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method (유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Cho, Jin-Yeon;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with solid, thin-walled and compound cross-sections. The weighted-modulus method is introduced to determine the laminated composite material properties. The shear center and the torsion constant for any given section are calculated according to the Trefftz' definition and the St. Venant torsion theory, respectively. The singular value problem of cross-section stiffness properties faced during the section analysis has been solved by performing an eigenvalue analysis to remove the rigid body mode. Numerical results showing the accuracy of the program obtained for stiffness, offset and inertia properties are compared in this analysis. The current analysis results are validated with those obtained by commercial software and published data available in the literature and a good correlation has generally been achieved through a series of validation study.

MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION (MRA와 POD를 적용한 공력특성 최적설계)

  • Koo, B.C.;Han, J.H.;Jo, T.H.;Park, K.H.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.7-15
    • /
    • 2015
  • This paper attempts to evaluate the accuracy and efficiency of a design optimization procedure by combining wavelets-based multi resolution analysis method and proper orthogonal decomposition (POD) technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Thus, even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system by conducting singular value decomposition for various field simulations. In this research, POD combined Design Optimization model is proposed and its efficiency and accuracy are to be evaluated. For additional efficiency improvement of the procedure, multi resolution analysis method is also being employed during snapshot constructions (POD training period). The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/MRA design procedure could significantly reduce the total design turnaround time and also capture all detailed complex flow features as in full order analysis.

Power and Offset Allocation for Spatial-Multiplexing MIMO System with Rate Adaptation for Optical Wireless Channels (다중 입출력 무선 광채널에서의 공간 다중화 기법의 적응적 전송을 위한 광출력과 오프셋 할당 기법)

  • Park, Ki-Hong;Ko, Young-Chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.8-18
    • /
    • 2011
  • Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless communication system is challenging due to the limited bandwidth of the optical sources. In this paper, we design the singular value decomposition (SVD)-based multiplexing multi-input multi-output (MIMO) system to support two data streams in optical wireless channels. In order to improve the spectral efficiency, the rate adaptation using multi-level pulse amplitude modulation (PAM) is applied according to the channel condition and we propose the method to allocate the optical power, the offset and the size of modulation scheme theoretically under the constraints of the nonnegativity of the modulated signals, the aggregate optical power and the bit error rate (BER) requirement. The simulation results show that the proposed allocation method gives the better performance than the method to allocate the optical power equally for each data stream.

Representation of Dynamic Stiffness Matrix with Orthogonal Polynomials (직교다항식을 이용한 구조계의 축약된 동강성행렬 표현)

  • 양경택;최계식
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • A modeling method is described to provide a smaller structural dynamic model which can be used to compare finite element model of a structure with its experimental counterpart. A structural dynamic model is assumed to be represented by dynamic stiffness matrix. To validate a finite element model, it is often necessary to condense a large degrees of freedom (dofs) to a relatively small number of dofs. For these purpose, static reduction techniques are widely used. However, errors in these techniques are caused by neglecting frequency dependent terms in the functions relating slave dofs and master dofs. An alternative method is proposed in this paper in which the frequency dependent terms are considered by expressing the reduced dynamic stiffness matrix with orthogonal polynomials. The reduced model has finally a minimum set of dofs, such as sensors and excitation points and it is under the same condition as the physical system. It is proposed that the reduced model can be derived from finite element model. The procedure is applied to example structure and the results are discussed.

  • PDF

Reduction Method based on Sub-domain Structure using Reduced Pseudo Inverse Method (축소 의사역행렬과 영역분할 기반 축소모델 구축 기법 연구)

  • Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.139-145
    • /
    • 2009
  • Reduction scheme is remarkably useful in the case requiring the repeated calculation procedure. Recently, the efficiency of the reduction scheme has been improved by combining scheme of sub-domain method. But, when the global domain is partitioned into a few sub-domains, sub-domains without constraints can be produced. it is needed to extract the ritz vector from each sub-domain to construct the reduced system of each sub-domain. it is easy to extract the ritz vector from sub-domain with constraint. on the other hand, pseudo inverse method should be employed to extract the ritz vector from sub-domain without constraint. generally, the pseudo inverse takes a large number of computing time to obtain a reduced system of a sub-domain without boundary condition. This trouble can be overcome by the reduced pseudo inverse scheme which proposed in this study. This scheme is based on the static condensation that is not related with selection of the primary degrees of freedom. Numerical examples demonstrate that present method saves computational cost effectively and predicts the accurate eigenvalues.

  • PDF

An Efficient Matrix-Vector Product Algorithm for the Analysis of General Interconnect Structures (일반적인 연결선 구조의 해석을 위한 효율적인 행렬-벡터 곱 알고리즘)

  • Jung, Seung-Ho;Baek, Jong-Humn;Kim, Joon-Hee;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.56-65
    • /
    • 2001
  • This paper proposes an algorithm for the capacitance extraction of general 3-dimensional conductors in an ideal uniform dielectric that uses a high-order quadrature approximation method combined with the typical first-order collocation method to enhance the accuracy and adopts an efficient matrix-vector product algorithm for the model-order reduction to achieve efficiency. The proposed method enhances the accuracy using the quadrature method for interconnects containing corners and vias that concentrate the charge density. It also achieves the efficiency by reducing the model order using the fact that large parts of system matrices are of numerically low rank. This technique combines an SVD-based algorithm for the compression of rank-deficient matrices and Gram-Schmidt algorithm of a Krylov-subspace iterative technique for the rapid multiplication of matrices. It is shown through the performance evaluation procedure that the combination of these two techniques leads to a more efficient algorithm than Gaussian elimination or other standard iterative schemes within a given error tolerance.

  • PDF

An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception (간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템)

  • Park, Myung Chul;Jo, Bong-Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper, a coding algorithm is proposed for multi-user multi-input multi-output (MU-MIMO) systems to improve the reception performance in fading conditions without reducing the bandwidth efficiency. The space division multiple access (SDMA) scheme that is one of the commonly used for MU-MIMO systems is vulnerable to the fading. The space time block code (STBC) scheme that is used to overcome the fading has a disadvantage of reduced throughput. The proposed MU-MIMO system first encodes transmitted symbols by linear dispersion code (LDC) which is less vulnerable to the fading and increases the throughput in proportional to the number of transmit antennas. Then, the LDC coded symbols are pre-coded by the result of singular value decomposition (SVD) of the estimated channel gain. We evaluate the performance of the proposed scheme compared with the conventional algorithms by computer simulations.

Research on damage and identification of mortise-tenon joints stiffness in ancient wooden buildings based on shaking table test

  • Xue, Jianyang;Bai, Fuyu;Qi, Liangjie;Sui, Yan;Zhou, Chaofeng
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.547-556
    • /
    • 2018
  • Based on the shaking table tests of a 1:3.52 scale one-bay and one-story ancient wooden structure, a simplified structural mechanics model was established, and the structural state equation and observation equation were deduced. Under the action of seismic waves, the damage rule of initial stiffness and yield stiffness of the joint was obtained. The force hammer percussion test and finite element calculations were carried out, and the structural response was obtained. Considering the 5% noise disturbance in the laboratory environment, the stiffness parameters of the mortise-tenon joint were identified by the partial least squares of singular value decomposition (PLS-SVD) and the Extended Kalman filter (EKF) method. The results show that dynamic and static cohesion method, PLS-SVD, and EKF method can be used to identify the damage degree of structures, and the stiffness of the mortise-tenon joints under strong earthquakes is reduced step by step. Using the proposed model, the identified error of the initial stiffness is about 0.58%-1.28%, and the error of the yield stiffness is about 0.44%-1.21%. This method has high accuracy and good applicability for identifying the initial stiffness and yield stiffness of the joints. The identification method and research results can provide a reference for monitoring and evaluating actual engineering structures.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.