• Title/Summary/Keyword: Singular value

Search Result 568, Processing Time 0.033 seconds

STATISTICAL PROPERTIES OF GRAVITATIONAL LENSING IN COSMOLOGICAL MODELS WITH COSMOLOGICAL CONSTANT

  • LEE HYUN-A;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.103-117
    • /
    • 1994
  • To extend the work of Gott, Park, and Lee (1989), statistical properties of gravitational lensing in a wide variety of cosmological models involving non-zero cosmological constant is investigated, using the redshifts of both lens and source and observed angular separation of images for gravitational lens systems. We assume singular isothermal sphere as lensing galaxy in homogenous and isotropic Friedmann­Lemaitre-Robertson- Walker universe, Schechter luminosity function, standard angular diameter distance formula and other galaxy parameters used in Fukugita and Turner (1991). To find the most adequate flat cosmological model and put a limit on the value of dimensionless cosmological constant $\lambda_0$, the mean value of the angular separation of images, probability distribution of angular separation and cumulative probability are calculated for given source and lens redshifts and compared with the observed values through several statistical methods. When there is no angular selection effect, models with highest value of $\lambda_0$ is preferred generally. When the angular selection effects are considered, the preferred model depends on the shape of the selection functions and statistical methods; yet, models with large $\lambda_0$ are preferred in general. However, the present data can not rule out any of the flat universe models with enough confidence. This approach can potentially select out best model. But at the moment, we need more data.

  • PDF

Improvement and Application for Environmental Conservation Value Assessment Map(ECVAM) of Nationwide Land in Korea

  • Lee, Moung-Jin;Jeon, Seong-Woo;Jo, Min-Jeong;Song, Won-Kyong;Kang, Byung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.335-346
    • /
    • 2007
  • This study is aiming at improving the Environmental Conservation Value Assessment Map(ECVAM) of National Land in Korea. The ECVAM items are composed of legal and environmental/ecological assessments. A popular method applied to ECVAM is an overlay environmental/ecological assessment items. The purpose of this study is to offer complementary items of the ECVAM by examining assessment items. In this study we assessed the ECVAM by five methods. Method 1 is Grade 1 areas of each administrative district; Method 2 is comparing overlapped areas of each assessment items Grade 1, 2 and permission of each assessment items duplication; Method 3 is Grade 1, 2 areas by only singular assessment items; Method 4 is Grade 1 areas only of Method 2; and Method 5 is Grade 2 areas only of Method 2. Method 1 showed Seoul and other metropolitan cities revealed a large proportion of Grade I regions by the legal assessment items. Gang won-Do, showed a large proportion of Grade I regions by the environmental/ecological assessment item. Method 2 showed 93.4% of diameter Grade II(standard for stability); forest diameter item accounted for 99.9% by Method 3, Method 4 showed 95.7% of forest diameter, and forest density accounted for 66.4% by Method 5. This study contributes to reduce the complexity in the process of manufacturing ECVAM of National Land, and to raise the flexibility in the process of managing and updating this map.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

NUMERICAL IMPLEMENTATION OF THE QMR ALGORITHM BY USING DISCRETE STOCHASTIC ARITHMETIC

  • TOUTOUNIAN FAEZEH;KHOJASTEH SALKUYEH DAVOD;ASADI BAHRAM
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.457-473
    • /
    • 2005
  • In each step of the quasi-minimal residual (QMR) method which uses a look-ahead variant of the nonsymmetric Lanczos process to generate basis vectors for the Krylov subspaces induced by A, it is necessary to decide whether to construct the Lanczos vectors $v_{n+l}\;and\;w{n+l}$ as regular or inner vectors. For a regular step it is necessary that $D_k\;=\;W^{T}_{k}V_{k}$ is nonsingular. Therefore, in the floating-point arithmetic, the smallest singular value of matrix $D_k$, ${\sigma}_min(D_k)$, is computed and an inner step is performed if $\sigma_{min}(D_k)<{\epsilon}$, where $\epsilon$ is a suitably chosen tolerance. In practice it is absolutely impossible to choose correctly the value of the tolerance $\epsilon$. The subject of this paper is to show how discrete stochastic arithmetic remedies the problem of this tolerance, as well as the problem of the other tolerances which are needed in the other checks of the QMR method with the estimation of the accuracy of some intermediate results. Numerical examples are used to show the good numerical properties.

Frequency Control of in Hybrid Wind Power System using Flywheel Energy Storage System

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.229-234
    • /
    • 2014
  • In this paper, a design problem of the flywheel energy storage system controller using genetic algorithm (GA) is investigated for a frequency control of the wind diesel hybrid power generation system in an isolated power system. In order to select parameters of the FESS controller, two performance indexes are used. We evaluated a frequency control effect for the wind diesel hybrid power system according to change of the weighted values of a performance index. To verify performance of the FESS controller according to the weighted value of the performance index, the frequency domain analysis using a singular value bode diagram and the dynamic simulations for various weighted values of performance index were performed. To verify control performance of the designed FESS controller, the eigenvalue analysis and the dynamic simulations were performed. The control characteristics with the two designed FESS controller were compared with that of the conventional pitch controller. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional controller.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

THE EFFECT OF DUST PARTICLES ON ION ACOUSTIC SOLITARY WAVES IN A DUSTY PLASMA

  • Choi, Cheong-Rim;Lee, Dae-Young;Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • In this paper we have examined the effect of dust charge density on nonlinear ion acoustic solitary wave which propagates obliquely with respect to the external magnetic field in a dusty plasma. For the dusty charge density below a critical value, the Sagdeev potential $\Psi1(n)$ has a singular point in the region n < 1, where n is the ion number density divided by its equilibrium number density. If there exists a dust charge density over the critical value, the Sagdeev potential becomes a finite function in the region n < 1, which means that there may exist the rarefactive ion acoustic solitary wave. By expanding the Sagdeev potential in the small amplitude limit up to on4 near n=1, we find the solution of ion acoustic solitary wave. Therefore we suggest that the dust charge density plays an important role in generating the rarefactive solitary wave.

Performance analysis of linear pre-processing hopfield network (선형 선처리 방식에 의한 홉필드 네트웍의 성능 분석)

  • Ko, Young-Hoon;Lee, Soo-Jong;Noh, Heung-Sik
    • The Journal of Information Technology
    • /
    • v.7 no.2
    • /
    • pp.43-54
    • /
    • 2004
  • Since Dr. John J. Hopfield has proposed the HOpfield network, it has been widely applied to the pattern recognition and the routing optimization. The method of Jian-Hua Li improved efficiency of Hopfield network which input pattern's weights are regenerated by SVD(singluar value decomposition). This paper deals with Li's Hopfield Network by linear pre-processing. Linear pre-processing is used for increasing orthogonality of input pattern set. Two methods of pre-processing are used, Hadamard method and random method. In manner of success rate, radom method improves maximum 30 percent than the original and hadamard method improves maximum 15 percent. In manner of success time, random method decreases maximum 5 iterations and hadamard method decreases maximum 2.5 iterations.

  • PDF

Projective Reconstruction from Multiple Images using Matrix Decomposition Constraints (행렬 분해 제약을 사용한 다중 영상에서의 투영 복원)

  • Ahn, Ho-Young;Park, Jong-Seung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.770-783
    • /
    • 2012
  • In this paper, we propose a novel structure recovery algorithm in the projective space using image feature points. We use normalized image feature coordinates for the numerical stability. To acquire an initial value of the structure and motion, we decompose the scaled measurement matrix using the singular value decomposition. When recovering structure and motion in projective space, we introduce matrix decomposition constraints. In the reconstruction procedure, a nonlinear iterative optimization technique is used. Experimental results showed that the proposed method provides proper accuracy and the error deviation is small.

LFT Modeling and Robust Stability Analysis of Missiles with Uncertain Parameters

  • Hou, Zhen-Qian;Liang, Xiao-Geng;Wang, Wen-Zheng;Li, Rui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • The structured singular value (${\mu}$) analysis based method has many advantages for the robust stability analysis of missiles with uncertain parameters. Nevertheless, the present linear fractional transformation (LFT) modeling process, which is the basis of ${\mu}$ analysis, is complex, and not suitable for automatic implementation; on the other hand, ${\mu}$ analysis requires a large amount of computation, which is a burden for large-scale application. A constructive procedure, which is computationally more efficient, and which may lead to a lower order realization than existing algorithms, is proposed for LFT modeling. To reduce the calculation burden, an analysis method is developed, based on skew ${\mu}$. On this basis, calculation of the supremum of ${\mu}$ over a fixed frequency range converts into a single skew ${\mu}$ value calculation. Two algorithms are given, to calculate the upper and lower bounds of skew ${\mu}$, respectively. The validity of the proposed method is verified through robust stability analysis of a missile with real uncertain parameters.