J. Astron. Space Sci. 21(3), 201-208 (2004)

THE EFFECT OF DUST PARTICLES
ON ION ACOUSTIC SOLITARY WAVES IN A DUSTY PLASMA

Cheong Rim Choi', Dae Young Lee, and Yonggi Kim
Department of Astronomy and Space Science, College of Natural Sciences and Institute for Basic Sciences
Chungbuk National University, Cheongju 361-763, Korea
E-mail: crchoi@chungbuk.ac.kr

(Received July 23, 2004, Accepted August 30, 2004)

ABSTRACT

In this paper we have examined the effect of dust charge density on nonlinear ion
acoustic solitary wave which propagates obliquely with respect to the external mag-
netic field in a dusty plasma. For the dusty charge density below a critical value, the
Sagdeev potential ¥'(n) has a singular point in the region n < 1, where n is the ion
number density divided by its equilibrium number density. If there exists a dust charge
density over the critical value, the Sagdeev potential becomes a finite function in the
region n < 1, which means that there may exist the rarefactive ion acoustic solitary
wave. By expanding the Sagdeev potential in the small amplitude limit up to dn* near
n = 1, we find the solution of ion acoustic solitary wave. Therefore we suggest that
the dust charge density plays an important role in generating the rarefactive solitary
wave.
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1. INTRODUCTION

The physics of the dust particles or impurities in plasmas has been recently studied in many
areas of space environments, such as planetary rings, comets, the interstellar medium, and the earth’s
ionosphere and magnetosphere (Goertz 1989, Mamun ez al. 1996, Rao et al. 1990, Yinhua & Yu
1994, Mamun & Alam 1998, Spatschek et al. 1979, Mamun 1997). Through the processes such as
ionization, field-emission, plasma currents, ultraviolet radiation, etc. the dust or impurity particles
can be highly charged. Their presence in the plasma can significantly change the plasma parameters
and modify the collective behavior of the plasma. Each of dusty particles has different shape, size,
charge, and mass, and thus it is complicated to treat them individually. Therefore, many models
of dusty plasma adopt an assumption that the dust-charged grains have constant charge and are
stationary in contrast to ion’s dynamical behavior (Shukla 2001, Mamun et al. 1996, Yu et al.
1980). In the present work, we consider solitary waves in a three-component plasma composed of
electrons, ions and dusty particles. We assume that the size of dusty particles is much smaller than
the Debye length and the average distance between the plasma particles.
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Figure 1. The Sagdeev potential when M = 0.63 and ! = 0.47 for Ny = 0.22, 0.30, 0.32, and 0.34.

Yinhua & Yu (1994) found the small amplitude compressive 1on acoustic solitary wave in a dusty
plasma by expanding Sagdeev potential up to n® order near n = 1. However, we have noticed that
a dusty plasma with its density over a critical value gives rise to a Sagdeev potential for which a
higher order expansion than dn® is required. Figure 1 illustrates such a case in comparison to the
Yinhua & Yu’s case, about which we will discuss more below in section 3. In our work, we expand
the Sagdeev potential up to dn* near n = 1 to see its effect on the ion acoustic solitary waves. From
the nonlinear differential equation obtained in this approximation, we find that there can exist the
rarefactive ion acoustic solitary wave as well as the compressive one.

In section 2, we briefly introduce the basic equations used and derive the Sagdeev potential. In
section 3, we analyze the Sagdeev potential obtained in section 2 and explain the condition for the
localized solution to exist. We then find the solutions of the ion acoustic solitary waves from the
small amplitude expansion in section 4. The conclusion is given in section 5.

2. BASIC EQUATIONS AND THE SAGDEEY POTENTIAL

"In this paper, we assume that the ion mass alone provides the inertia and the inertialess electrons
follow the Boltzmann relation, and that the heavy impurity particles are stationary in a magnetized

plasma.
The basic equations governing the ion dynamics in this plasma system are
on;
6; + V- (nivi) =0. (1)
and 5 Ve B
‘—Y‘l"r‘(Vi‘V)Vi:—e_'i‘e Ovi x é,. 2
ot m; m;c

where subscript 4 stands for ions, n;, v;, m;, and ¢ are the number density, velocity, mass, and the
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electrostatic potential, respectively. The number density of the electrons is given by
Tle = Teo eXp(e¢/Te)~ 3)

We assume that the length scale L of the soliton should be greater than the Debye length Ap
and the gyro-radius r4. Thus we use the charge neutrality condition instead of the Poisson equation.

The charge neutrality condition is
n = Ng+ N,. “4)

where n = n;/n;, the normalized dust particles charge density Ny = gd—oi Zg4 is the number of
the charge residing on the dust particle, N, = n./n;o. So it is satisfied that Ny + n.o/npo = 1in
equilibrium.

The basic equation of the system can be rewritten in the normalized form as follows

on + O(nv,) + 8(nv,)

ot | oz 5z O )
v, G, gy _ 0% '
6t+< "5z 77 az> Ve = 5y T U0 ©)
avy 0 0
Bt + ( % 5z +vzaz> Uy = —Ug, @)
and 5 5 8 %
v, _ o2
5 +<vz%—+vz—a—;> Vs = = (3
Here, the normalized variables are Qt — ¢, (%)V -V, % - v, nl'— — n, and %33 — ®, where
s i0 e

Cs = (L -)1/2 is the ion acoustic velocity, {2 = fn% is the ion gyro-frequency, and ry = & is the

ion gyro- radlus Note that all variations are assumed to be in the x-z plane.

To obtain dimensionless linear dispersion relation for low frequency (w <« Q) ion acoustic
waves, we linearize the normalized basic equations by assuming all the perturbed quantities vary as
exp[i(kLx + kjjz — wt)]. Then, the dispersion can be written as

w:kJ_(6+k'|2)—1/2- 9

where k. and k are the wave vectors in the perpendicular and parallel direction to an external
magnetic field By, respectively, and € = n.g/ni. This dispersion and the nonlinear steepening of
the finite amplitude ion acoustic waves can balance each other to form solitary waves.

To find the solution of Eqgs. (5)-(8), we define the moving coordinate as,

E:lla:-i-l”z—Mt. (10)

where [ and l” are direction cosines, and M is the Mach number of localized wave. It is satisfied
2+ l” = 1. From the continuity equation (5), and using Eq. (10), we obtain the relation,

0 0 1\ d

Using the quasi-neutrality condition, we can write the normalized electric potential as

$ =1In (”"Nd) (12)

€
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Then, »
® 1 dn
= 13
d§ - n— Ngd¢ (13
Using the boundary conditionat{ = o0, n = 1, ¢ = v = 0 and Eqgs. (11)-(13), we can calculate
vy as
1d /M?
=——=|-—=+4+9). 14
AT <2n2+ ) a4

We substitute Eq. (14) into the transformed Eq. (6) in a moving frame by using Eqs. (10) and (11),
and integrate them. Then, v,, can be written as

_ M n— Ny M(n-1
Vg = — MlJ_{(n_1)+Ndln<1—Nd)}+iI< n ) (15)

Using Egs. (10) and (11), we substitute v; and Eq. (15) into the transformed Eq. (7) in a moving
frame, then we obtain

4 M2 I? . n— Ny
— — | =——= -1 Nyl —1).
e (‘I>+2n2) e {n(n )+n dn(l_Nd)}Hn 1) (16)
Equation (16) can be expressed as
dn
. 1
(d{) +¥(n)=0 amn

which is in the form of the the energy integral for a classical particle in a potential well (Sagdeev
1966), and where ¥ (n) is the Sagdeev potential,

A%, (n) + Ta(n)

(_%2 N n—_‘m)g (18)

¥(n) =

and

Ti(n) = Ny {(n ~1)+ M ( = )} (;l-}!\\fa) MEUSGELARY
—(n—=1)(1+ Ng) — M? (Inn — 2=1)
\112(7?,): {1_Nd_l” ( )}ln?_:_j_\l—:'+l||2lnn—(n—l)

3. CONDITION FOR THE EXISTENCE OF ION ACOUSTIC SOLITARY WAVES

We now examine the Sagdeev potential ¥(n) to determine the conditions for the ion acoustic
solitary wave to exist and the behavior of possible localized solutions. The conditions for the ex-
istence of localized solutions is given by (Yinhua & Yu 1994, Mamun & Alam 1998, Popel & Yu
1995)

d¥(n)
v -1 = =0
(n)ln—l dn

n=1

T(N) = 0 (19)
¥(n) < 0, N<n<l or 1<n<N
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Figure 2. The critical Mach number M. vs. Ny for [ = 0.47.

where N is the minimum or the maximum ion density within the localized structure, respectively.

In Figure 1, we plotted the Sagdeev potential for selected value of N4. There are four solutions
including one double solution. The rarefactive (compressive) solitary wave may exist in the regions
with N < n < 1(1 < n < N). Most importantly, it is seen from Figure 1 that there must exist a
critical value of Ny above which the rarefactive solitary wave exists in the region N < n < 1. For
example, for Ny = 0.22, the potential becomes singular at within the region, as this value of Ny is
smaller than the critical value. Thus, we suggest that the dust charge density Ng plays an important
role in determining the rarefactive solitary wave solution. Also we see that the amplitude of ion
acoustic solitary waves decreases as IV increases as in Figure 1.

2
If the condition dT\I;(}Q |n=1 < 0 is satisfied, there can exist ion acoustic solitary waves. In this
case, the Mach number of the solitary wave lies in the range of

1 1
l"2(1—Nd)<M2<1—Nd' (20)

For a dusty free plasma (Yu et al. 1980, Shukla & Yu 1978), the solitary wave propagates with a
subsonic speed. From Eq. (20), we can calculate the maximum critical Mach number M. to be

1
MC:l,[,/led. 1)

In the limit of M — M_, the amplitude of solitary wave becomes zero. As IV; increases, we know
that the solitary wave can propagate with supersonic speed for /) = 0.47 which is noted in Figure 2.
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Figure 3. The change of the region can be existed both the compressive and rarefactive ion acoustic solitary
wave when (a) Ng = 0.30, (b) Ny = 0.36, and (c) Ny = 0.45.

4. SMALL AMPLITUDE ION ACOUSTIC SOLITARY WAVE

In order to find both compressive and rarefactive solitary waves, the Sagdeev potential ¥(n)
needs to be expanded up to fourth order in dn nearn = 1,

¥ (n) ~ Adn® + Bon® + Con'. (22)
where dn = n — 1 and the coefficients are A = %%ﬂi@ln:p B = %%ﬂln:y and C =

513‘14%?”":1. The relationship among the coefficients A, B, and C, plays an important role in
determining the localized solution to be the solitary waves of the bump type in Eq. (22). Expanding
the Sagdeev potential up to lower order than én? order will lead to only compressive solution, but
no rarefactive one, as done previously by Yinhua & Yu (1994).

Comparing Eq. (22) and Figure 1, we find that the condition for a bump type solution is A < 0
and C > 0. The size of this region depends on N values, as shown in Figure 3. It is known that the
region for the existence of the bump type (rarefactive and compressive) solitary waves increases as
Ny increases. It means that the solitary waves can be more easily generated as IV increases. For a
dust free plasma, our result reduces to that of Yu et al. (1980).

Now we proceed to find the bump type solutions of ion acoustic solitary wave. Substituting the
expression for ¥ of Eq. (22) into Eq. (17), we obtain

1 /dén\? 9 3 4
3 —CE + Aén? + Bén® + Cén* = 0. 23)

where dn = n — 1. Letén = %, we obtain

2
(Z_Z) +2A4y% + 2By +2C =0. (24)

As the condition for the bump type localized solutions to exist is A < 0 and C' > 0, and so B? —
4AC > 0, the solutions of Eq. (24) are obtained as
1

on = . (25)
" —%:&:|a|cosh(()
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Figure 4. The bump type ion acoustic solitary waves for M = 0.65 and I, = 0.47; (a) the compressive, (b) the
rarefactive ion acoustic solitary waves for Ny = 0.28, 0.30, and 0.32, respectively.

where a? = Bzﬁég and { = /] — 2AJ¢. Each of the positive and negative sign means the solution
of compressive and rarefactive solitary wave in Figure 4 (a) and (b), respectively. When M = 0.65
and l” = 0.47, there are the compressive and the rarefactive ion acoustic solitary waves for Ny =
0.28,0.30, and 0.32 in Figure 4, respectively. It shows that the amplitude of the compressive solitary
wave decreases as Ny increases. For the coefficient C — 0, our result reduces to the solution of

Yinhua & Yu (1994).

5. CONCLUSION

In this study, we have demonstrated the effect of dust particles on ion acoustic solitary wave
in a dusty plasma. There can exist the rarefactive ion acoustic solitary wave in addition to the
compressive ion acoustic solitary wave in a dusty plasma when dusty particle’s charge density Ny
is over a critical value. We calculated the Sagdeev potential exactly and demonstrated the existence
of ion acoustic solitary wave. We calculated the rarefactive as well as the compressive solitary wave
by expanding the Sagdeev potential in a small amplitude limit up to én* order near n = 1. We also
found that, as the dust charge density NV, increases, the parameter region where solitary waves exist
increases, but the amplitude of solitary waves decreases.
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